

40Gb/s QSFP Active Copper TC-QQCOy-V00

Product Brief Introduction

Features

- Hot pluggable QSFP active cable assembly
- 4 independent duplex channels operating at 10Gbps, also support for 2.5Gbps, 5Gbps data rates
- Proven Link length up to 15 meters over 26AWG cables
- Compliant QSFP MSA specifications
- Operating case temperature: -40 to 85°C
- Single 3.3V power supply, low power consumption, <1.5W
- All-metal housing for superior EMI performance, low Near-End Crosstalk(NEXT)
- Precision process control for minimization of pair-to-pair skew
- Pull-to-release latch for easy installation
- RoHS compliant

Applications

- InfiniBand-SDR, DDR, QDR
- Computer cluster cross-connect
- Switches, Routers, and HBA's
- Enterprise Data Center
- High Performance Computing(HPC) & Storage

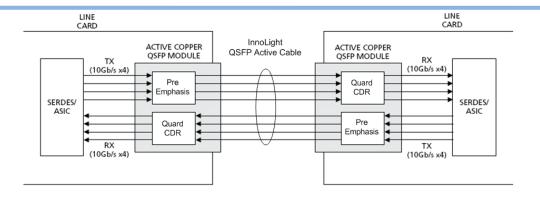


Figure1: Application in System

1. GENERAL DESCRIPTION

The InnoLight TC-QQCOx-V00 is specifically designed to allow the end-user an active cable connection solution between ports based on QSFP connectivity, respectively. The cable is plugand-play into these powered ports and provides the customer with all the advantages of a cost effective & easy to handle high speed connection. The transmitter side accepts electrical input signals which are voltage compatible with both Low Voltage Positive Emitter Coupled Logic (LVPECL) and Current Mode Logic (CML) levels. All input data signals are differential and are internally terminated. The receiver side recovers the parallel electrical input signals via a quad CDR into clear-edge parallel electrical output signals. The outputs electrical signals of receive side are voltage compatible with Current Mode Logic (CML) levels. All data signals are differential and support a data rate up to 10Gbps per channel. All transmitter signals and receiver signals are AC coupled internally on both modules ends.

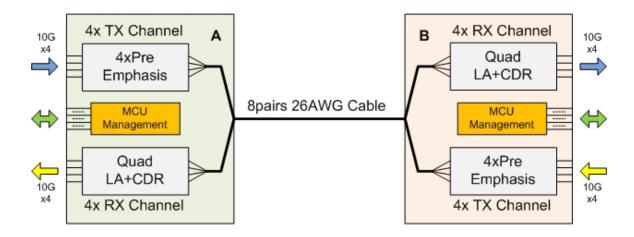
The figure on the next page, presents a detailed functional block diagram of the QSFP module with corresponding external connection pins.

A single +3.3V power supply is required to power up the module. Both power supply pins VccTx and VccRx are internally connected and should be applied concurrently. As per MSA specifications the module offers 7 low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, LPMode, ModPrsL and IntL.

Module Select (ModSelL) is an input pin. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple QSFP modules on a single 2-wire interface bus – individual ModSelL lines for each QSFP module must be used.

Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication

interface and enable the host to access the QSFP memory map.


The ResetL pin enables a complete module reset, returning module settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until the module indicates a completion of the reset interrupt. The module indicates this by posting an IntL (Interrupt) signal with the Data_Not_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

Low Power Mode (LPMode) pin is used to set the maximum power consumption for the module in order to protect hosts that are not capable of cooling higher power modules, should such modules be accidentally inserted.

Module Present (ModPrsL) is a signal local to the host board which, in the absence of a module, is normally pulled up to the host Vcc. When a module is inserted into the connector, it completes the path to ground though a resistor on the host board and asserts the signal. ModPrsL then indicates a module is present by setting ModPrsL to a "Low" state.

Interrupt (IntL) is an output pin. When "Low", it indicates a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the Host Vcc voltage on the Host board.

2. QSFP Copper Design Structure

InnoLight TR-QQCOZ-N00 active copper cable includes one pair (A-B) QSFP modules connected by 26AWG cable which have 8 pair differential cables inside, the cable lengths are 10M, 13M to 15M, three different types.

Part Number	Diameter (mm)	Max Length (m)
TC-QQCOS-V00	7.11	10
TC-QQCOM-V00	7.11	13
TC-QQCOL-V00	7.11	15

3. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Note
Storage Temperature	Tst	-40	125	degC	
Relative Humidity (non-condensation)	RH	1	85	%	
Operating Case Temperature	Торс	-40	85	degC	1
Supply Voltage	VCC3	-0.3	3.6	V	
Voltage on LVTTL Input	Vilvttl	-0.3	VCC3 + 0.2	V	

NOTE: Stress above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not applied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

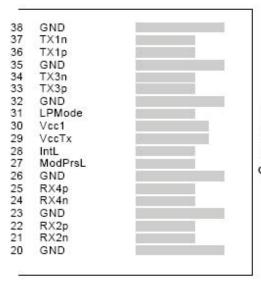
4. Recommended Operating Conditions and Supply Requirements

Parameter	Symbol	Min	Max	Unit
Operating Case Temperature	Торс	-40	85	degC
Relative Humidity (non-condensing)	Rhop	-	85	%
Power Supply Voltage	VCC3	3.135	3.465	V
Power Supply Current	ICC3	-	750	mA
Total Power Consumption	Pd	-	2.0	W

5. DC Low Speed Control and Alarm Signals Electrical Interface

Parameter	Conditions	Symbol	Min	Тур.	Max	Units
Supply Current	@ VCCT	IVCC		450	570	mA
Power Consumption				1.48	1.88	W
	Host Vcc Range		0		0.4	
ModPrsl and IntL	2V – 3.47V	VOH	Host_Vcc - 0.5		Host_Vcc + 0.3	
LPMode, Reset,	Low Voltage	VIL	0.3		0.8	
ModeSelL	ModeSelL TTL		2		VccT + 0.3	V
		VIL	0.3		VccT*0.3	V
SCL, SDA	Host Vcc Range	VIH	VccT*0.7		VccT + 0.5	
	3.14V – 3.47V	VOL	0		0.4	
		VOH	Host_Vcc - 0.5		Host_Vcc + 0.3	

6. Module Transmitter Single Channel Input Characteristics


Parameter	Conditions	Symbol	Min	Тур.	Max	Units
Nominal Data Rate		DR	2.49	10	11.3	Gbps
Reference Differential Input Impedance		Zd	80	100	120	Ω
Input AC Common Mode Input Voltage			0		20	mV (RMS)
Differential Input Voltage Swing		VID	100		1200	mV

7. Module Receiver Single Channel Output Characteristics

Parameter	Conditions	Symbol	Min	Тур.	Max	Units
Nominal Data Rate		DR	2.49	10	11.3	Gbps
Reference Differential Output Impedance		Zd	80	100	120	Ω
Differential Output Amplitude	RLoad = 1000hm, Differential	VOSPP	370		800	mV
Output Rise and Fall time	20% to 80%	tRH, tFH	30			ps
Receiver Output Deterministic Jitter		DJ			10	ps
Receiver Output Total Jitter	@10Gbps (BER 10 ⁻¹²)	TJ			25	ps

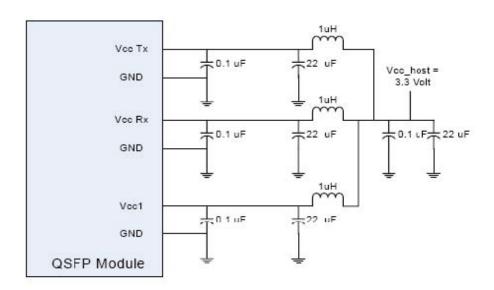
8. Pin Assignments and Descriptions

2 TX2n TX2p GND 4 5 6 7 8 TX4n TX4p GND Card ModSelL ResetL 9 Edge 10 VccRx SCL 11 SDA 12 13 GND RX3p 14 RX3n 15 GND 16 RX1p 17 RX1n GND 18 19

GND

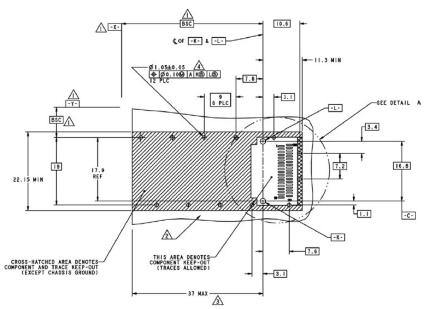
Top Side Viewed from Top

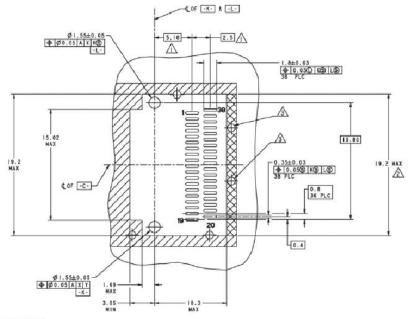
Bottom Side Viewed from Bottom



PIN	Logic	Symbol	Name/Description	Note
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data	
3	CIVIL-I	ΙλΖμ	output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	
7		GND	Ground	1
8	LVTLL-I	ModSelL	Module Select	
9	LVTLL-I	ResetL	Module Reset	
10		Vcc Rx	+ 3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CMLO	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	1
17	CMLO	Rx1p	Receiver Non-Inverted Data Output	
18	CMLO	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CMLO	Rx2n	Receiver Inverted Data Output	
22	CMLO	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CMLO	Rx4n	Receiver Inverted Data Output	1
25	CMLO	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTLO	ModPrsL	Module Present	
28	LVTTLO	IntL	Interrupt	
29		Vcc Tx	+3.3 V Power Supply transmitter	2
30		Vcc1	+3.3 V Power Supply	2
31	LVTTLI	LPMode	Low Power Mode	
32		GND	Ground	1
33	CMLI	Тх3р	Transmitter Non-Inverted Data Input	
34	CMLI	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	1
36	CMLI	Tx1p	Transmitter Non-Inverted Data Input	
37	CMLI	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	1

- GND is the symbol for signal and supply (power) common for QSFP modules. All are common within the QSFP module and all module voltages are referenced to this potential otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

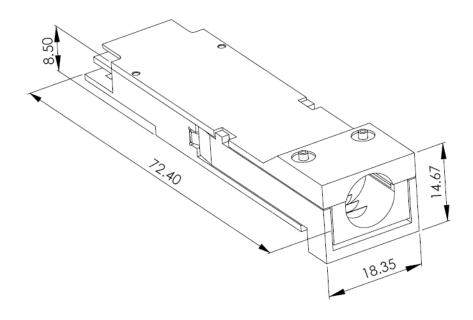

9. Recommended power supply filtering Example of QSFP Host board schematics.


10. Recommended PCB layout

A typical host board mechanical layout for attaching the QSFP transceiver is presented below. The recommended host electrical connector should be a 38-pin IPASS right angle connector assembly (example: Tyco PN: 1761987-9) and the cage assembly should be QSFP single cage (example: Tyco PN: 1888617-1).

↑ DATUM -X- AND -Y- ESTABLISHED BY CUSTOMER'S FIDUCIAL
↑ DATUM -A- IS TOP SURFACE OF HOST BOARD.
↑ LOCATION OF EDGE OF PCB IS APPLICATION SPECIFIC.
↑ FINISHED HOLE SIZE.

CENTERLINE OF PAD.


SURFACE TRACES PERMITTED

WITHIN THIS LENGTH.

INDICATED HOLES ARE OPTIONAL.

QSFP Copper Module Outline for System Design

USA	China
InnoLight Technology Corp.	InnoLight Technology (Suzhou) Ltd.
Tel: (408) 838-8769	Tel: (0512) 6299-4707
Fax: (408) 777-8091	Fax: (0512) 6299-4515
Email: omok@innolight.com	Email: jyang@innolight.com
Add:	Add:
3 Results Way, Cupertino	A311 Section2 International Science
CA 95014	Park 1355 Jinji Lake Ave., Suzhou SIP,
United States	Jiangsu 215021 China

Contact Information