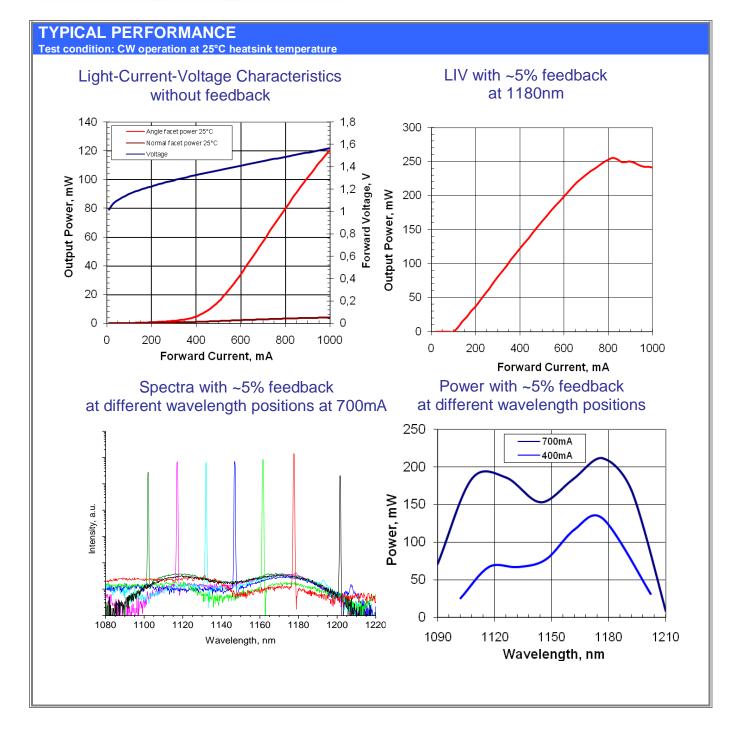


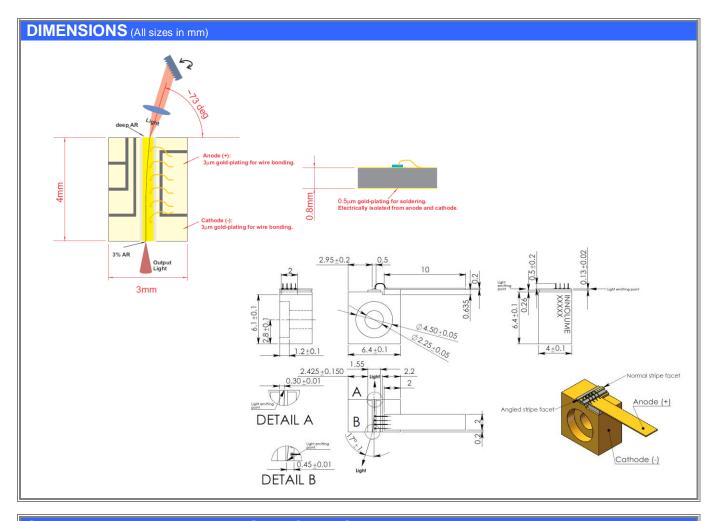
GC-1180-CM-200

High Power Gain Chip - 200mW @1180nm

Features:


- InAs Quantum Dot based single transverse mode gain chip
- Broad tuning range
- Optimized for wavelength locked operation in external cavity system
- Proprietary mirror coating technology enabling long life-time
- CW or pulse (down to 2ns pulse width) operation
- High reliable Au/Sn bonding technology

Application: • External cavity tunable lase	Chip design category: Type D
Specification	DATE: 24 th November 2010


SPECIFICATIONS Test conditions: CW operation, heatsink temperature 25°C							
Parameters	Symb.	Min.	Тур.	Max.	Unit		
Expected optical output power at the central part of the tuning range (depending on external feedback)	P _{out}	150	200		mW		
Central position of wavelength locking range	λ_{P}	1170	1180	1190	nm		
Wavelength locking range (@ min. 6% of external feedback)	Δλ	80	100		nm		
Operating current	I _{op}		700	900	mA		
Operating voltage	U			2.0	V		
Reflectivity of back facet (AR-coated)	R _{bf}	1		10	%		
Reflectivity of front Facet (AR-coated)	R _{ff}			0.5	%		
Fast axis beam divergence of self lasing (FWHM)	Өт		38	41	deg		
Slow axis beam divergence of self lasing (FWHM)	Θ∥		7	9	deg		

ABSOLUTE MAXIMUM RATINGS							
Parameters	Min	Max	Unit				
Diode reverse voltage		1	V				
Forward current		1000	mA				
Storage temperature range (in original hermetically sealed package)	5	80	°C				
Case operating temperature range	20	40	°C				

SAFETY AND OPERATING INSTRUCTIONS

The laser light emitted from this Gain Chip is invisible and will harmful to the human eye. Avoid looking directly on the Gain Chip facet or into the collimated beam along its optical axis when the device is in operation. Proper laser safety eyewear must be worn during operation.

Absolute Maximum Ratings may be applied to the Gain Chip for short period of time only. Exposure to maximum ratings for extended period of time or exposure above one or more max ratings may cause damage or affect the reliability of the device. Operating the Gain Chip outside of its maximum ratings may cause device failure or a safety hazard. Power supplies used with the component must be employed such that the maximum peak optical power cannot be exceeded. A proper heatsink for the Gain Chip is required.

The Device is an Open-Heatsink Diode Gain Chip; it may be operated in cleanroom atmosphere or dust-protected housing only. Operating temperature and relative humidity must be controlled to avoid water condensation on the laser facets. Any contamination or contact of the laser facet must be avoided.

ESD PROTECTION – Electrostatic discharge is the primary cause of unexpected laser diode failure. Take extreme precaution to prevent ESD. Use wrist straps, grounded work surfaces and rigorous antistatic techniques when handling laser diodes.

LASER RADIATION
AVOID EXPOSURE TO THE BEAM
CLASS 3B LASER PRODUCT

VISIBLE AND/OR INVISIBLE LASER RADIATION
AVOID EYE OR SKIN EXPOSURE TO
DIRECT OR SCATTERED RADIATION
DIRECT OR SCATTERED RADIATION
DIRECT OR SCATTERED RADIATION
UNAVEROLUTION 1400 nm
CLASS IIIb LASER PRODUCT