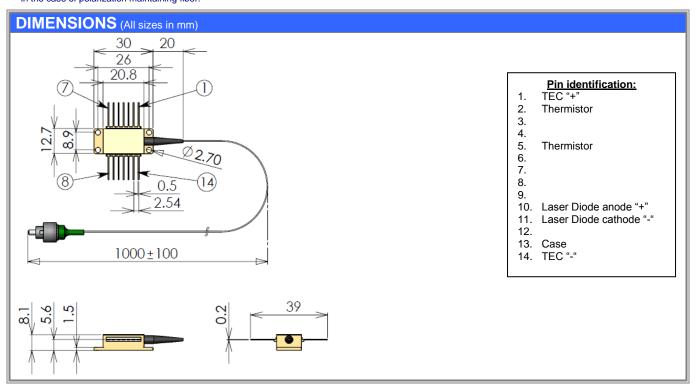


LD-1160-BF-300

Fiber Coupled High Power Laser Diode - 300mW @1160nm ex-fiber

Features:

- InAs/GaAs Quantum Dot based diode laser
- Proprietary mirror coating technology enabling high reliability
- CW or pulse (down to 2ns pulse width) operation
- High reliable Au/Sn-technology
- Optional: polarization maintaining PM980 fiber
- Optional: integrated monitor photodiode for power control


Specification

DATE: 9th February 2010

SPECIFICATIONS Test conditions: CW operation, thermistor temperature 25°C					
Parameters	Symb.	Min.	Тур.	Max.	Unit
Output power	P _{out}	200	300		mW
Mean wavelength at Pout 1	λ_{P}	1150	1160	1170	nm
Spectral width @ -3dB level at Pout	Δλ		10	14	nm
Wavelength temperature tunability	Δλ/ΔΤ	0.45	0.5	0.55	nm / °C
Threshold current	I _{th}		100	180	mA
Operating current at Pout	I _{op}		1100	1300	mA
Forward voltage at Pout	V _f		1.6	1.8	V
Polarization Extinction Ratio ²	PER	15	17		dB
Recommended operating temperature (on thermistor)	T _{op}	15	25	30	°C

¹ Weighted mean ("center of mass") spectral point.

² In the case of polarization maintaining fiber.

ABSOLUTE MAXIMUM RATINGS				
Parameters	Min.	Max.	Unit	
Laser Diode reverse voltage		1	V	
Laser Diode CW forward current		1500	mA	
Thermo Electric Cooler current		3	Α	
Thermo Electric Cooler voltage		4	V	
Storage temperature range (in original sealed pack)	5	80	°C	
Case operating temperature range	10	50	°C	

THERMISTOR SPECIFICATION					
Parameters	Value	Unit			
Thermistor type	BC103J1K				
Resistance @25°C	10 ± 1	kOhm			
Beta 0-50°C	3890	K			
88 10000 55000 55000 0 0 0 0 0 0 0 0 0 0 0	CURVE 30 35 40 45 emperature, C	50 55 60			

Parameters	HI1060	PANDA PM980	Unit
Numerical aperture (Typical)	0.14	0.14	
Cutoff wavelength	920±50	920±50	nm
Mode-field diameter (@1060nm)	6.2±0.3	6.6±0.3	μm
Cladding diameter	125±1	125±1	μm
Coating diameter	245±15	245±15	
Length	1.0 ± 0.1		m
Connector	FC/APC connector		
FAST AXIS			

SLOW AXIS

SAFETY AND OPERATING INSTRUCTIONS

The laser light emitted from this device is invisible and will be harmful to the human eye. Avoid looking directly into the output fiber or into the collimated beam along its optical axis when the device is in operation. Proper laser safety eyewear must be worn during operation.

Operating the laser diode outside of its maximum ratings may cause device failure or a safety hazard. Power supplies used with the component must be employed such that the maximum forward current cannot be exceeded. A proper heatsink for the laser diode module on thermal radiator is required. The module must be mounted on radiator with screws (bolt down in X-style fashion with initial torque set to 0.075Nm and final X-style bolt down at 0.15Nm) or clamps. The deviation from flatness of radiator surface must be less than 0.05mm. It's recommended using of In-foil or similar between bottom of the module and heatsink for thermal interface.

Carefully handle the fragile fiber, do not apply any stress, do not pull the fiber, do not bend fiber with a radius smaller than 3cm. Operate the laser module with clean fiber connector only. Periodically check and clean the connector if necessary. To clean the connector use suitable fiber cleaning tools (e.g. special cleaning tissue for optics). Perform cleaning only while the laser is switched off. Protect the fiber connector with protection cap while it's unplugged.

ESD PROTECTION – Electrostatic discharge is the primary cause of unexpected Laser Diode failure. Take extreme precaution to prevent ESD. Use wrist straps, grounded work surfaces and rigorous antistatic techniques when handling laser diodes.

OBSERVE PRECAUTIONS

