products & services COTOODGUC

WORKSHOP OF PHOTONICS

02	Workshop of Photonics			
05	Examples			
06	Products & Services			
07	CONTRACT MANUFACTURING SERVICES Glass Ceramics Sapphire & Ruby Optical Fibers Metal Plastic			
23	LASER WORKSTATIONS FemtoLAB FemtoLAB KIT FemtoMPP FemtoGlass			
35	TECHNOLOGY FOR CUTTING GLASS & SAPPHIRE			
38	SPACE-VARIANT RETARDERS S-Waveplate Higher Order S-Waveplate Circular Grating Flat Top			

47 Contact Us

Solutions for your µ tasks!

Ultra-high precision & quality

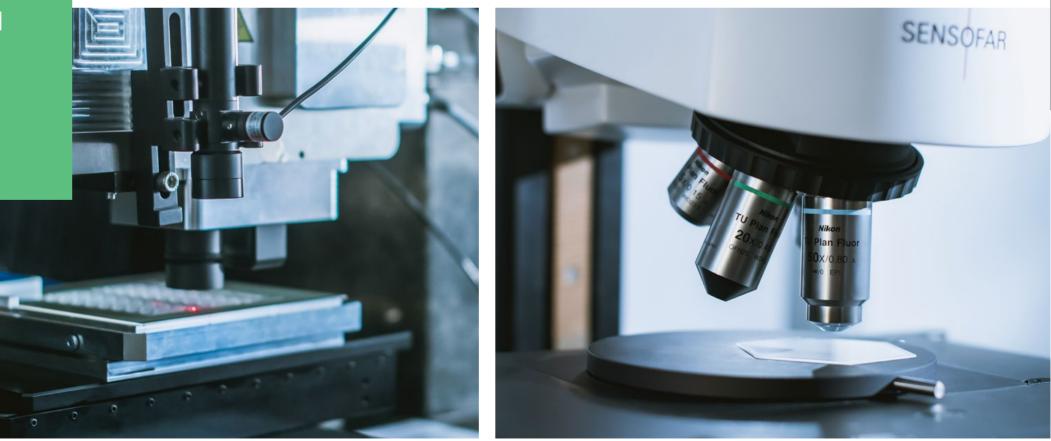
We are a growing high-technology company that provides solutions and technologies for customers in industry and science around the world.

We are:

Laser process development professionals

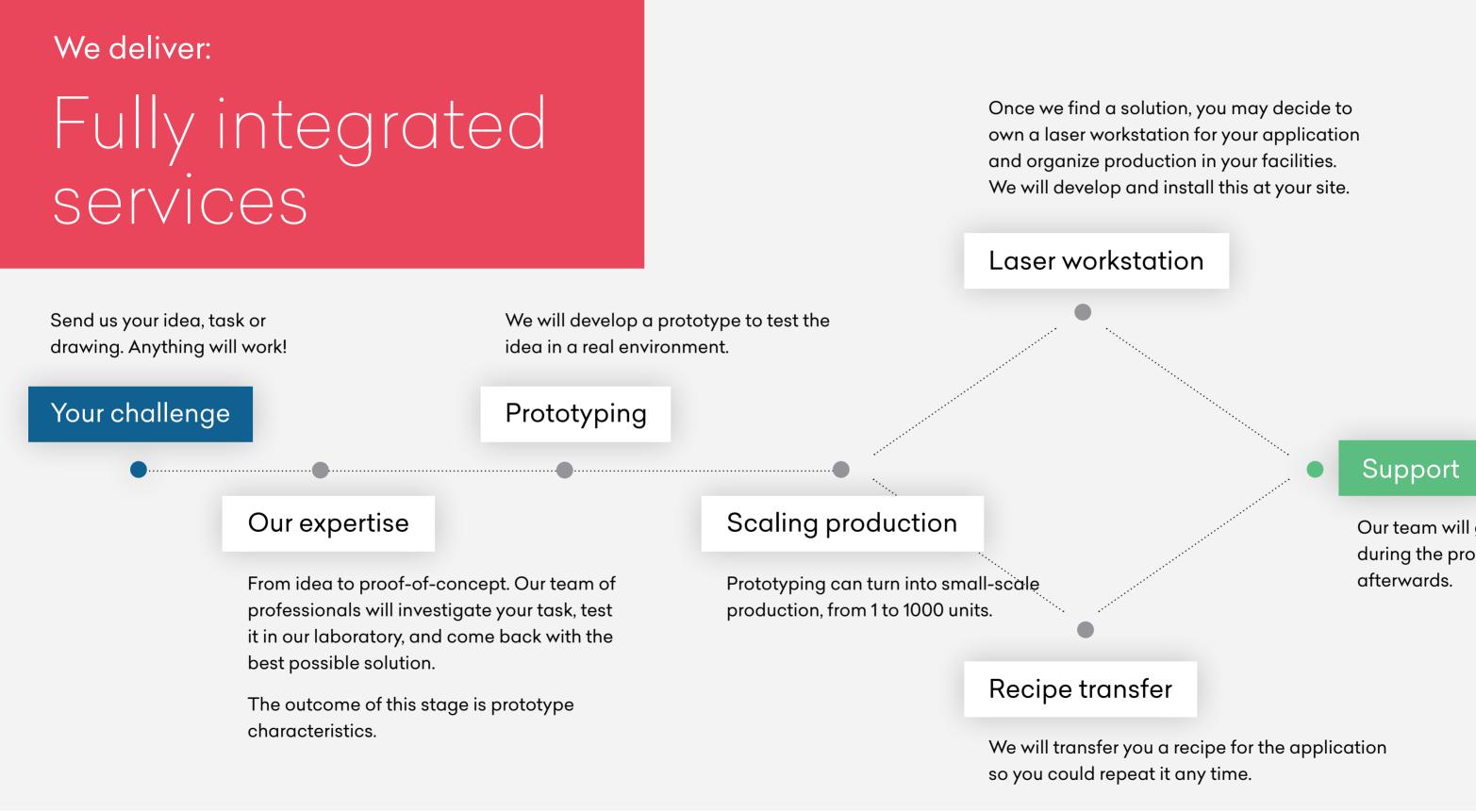
Solution providers

Technology demonstrators


A company with 17 years of expertise

We have:

- In-house laser processing facilities, complemented by post-processing capabilities
- Clean-room facilities for even higher quality
- 6 in-house and 2 licensed patents, enabling cutting-edge technologies
- R&D studies with more than 10 academic and research partners
- ISO 9001 certification



Members of:

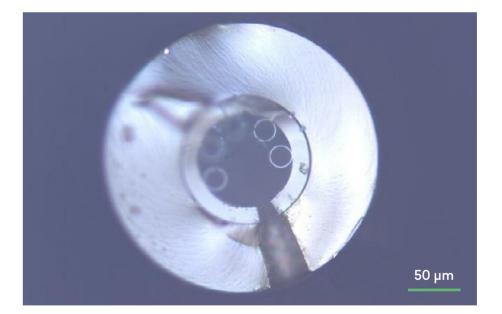
Our team will guide you during the process and

We implement:

Application examples

Actual works, conducted in our laboratory

Laser drilling of biopsy probes for embryology


The GeneSearch Embryo Cradle, is a new embryo manipulation tool allowing embryo penetration and biopsy at all stages right up to the time for implantation in the uterus. After the collection of a few cells for DNA analysis, even as part of the same procedure, the device can easily remove blastocoel fluid to optimize the embryo freezing process.

One of the main components - glass biopsy probes - were drilled by WOP. Probe diameters can vary from 12µm to more than 20µm, and the biopsy ports vary in diameter from 5µm to more than 10µm. The biopsy port is a clean, sharp-edged, laserdrilled hole through the near sidewall of the probe, located near its' tip.

Optical fiber gas sensors

RISE RESEARCH INSTITUTES OF SWEDEN develop novel optical fibers that are suitable for gas sensing under light illumination. The unique design requires precise drilling of laser trenches to create an opening for gas to enter.

Accurate process control enables selective laser micromachining without affecting the surrounding fiber structure, as well as stable and precise alignment for laser drilling in between separate glass rings in fiber structure.

Portfolio

Contract manufacturing

- Ultra-high precision & quality
- All types of material

Laser workstations

- Results-based
- Upgradeable
- Flexible
- Full support

Space-variant retarders

- Ultra-high damage threshold
- High transmission
- Reliable and resistant surface

Technology for cutting glass & sapphire

- Unique laser technology developed by WOP
- Ultra-high precision and quality

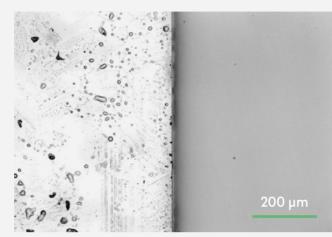
Contract manufacturing services

WORKSHOP OF PHOTONICS

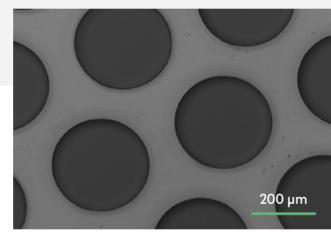
V.J.J.J. Jako

Glass

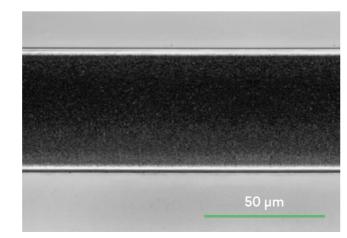
Drilling, cutting, dicing • High aspect ratios unachievable with alternative technologies • Ultra-high precision & quality • Irregular-shaped holes • Various types of glass • Straight & curved cuts • Small feature sizes


Exceptional expertise in glass processing

With glass being a demanding material, we offer more than 10 years of experience in glass processing, including drilling, cutting and dicing.


Intensive research in glass machining and unique glass processing techniques ensure ultra-high precision & quality results.

Applications


- Sensors (image, pressure, gal acceleration and other)
- Advanced packaging applications •
- Semiconductors and other functional • devices
- MEMS
- Wafer-level optics •
- Gyroscopes •
- Aerospace applications •
- Analytical chips •

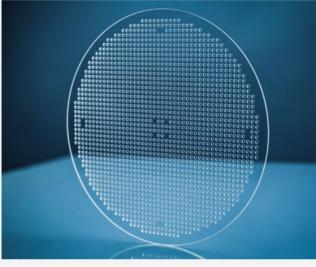
Tempered glass cutting

Borosilicate glass drilling

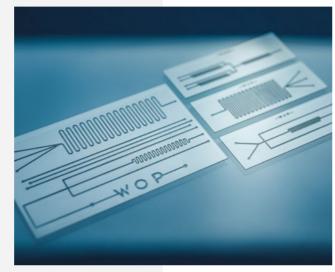
Tempered glass cutting

Specifications

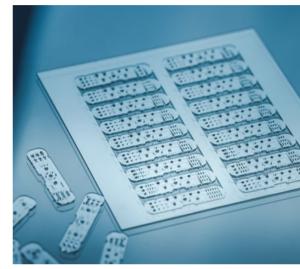
- Schott, Hoya, AGC
- Wafer size up to 200 mm x 200 mm (8")
- Circular, square, and other-shaped holes
- Low chipping <10 µm
- Smooth side walls, Ra <1 µm
- Typical min. hole size 20 µm (round)

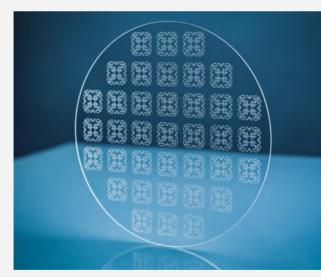

- No sagging around holes
- Aspect ratio up to 1:100
- Ability to work with metalized glass types (e.g. Au, Pt, Ni, Cr, Mo) •
- Minimal or no post-processing is needed

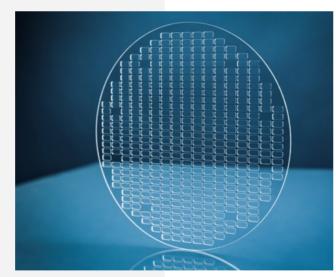
\mathbf{W}


- A variety of glass types and major suppliers Corning,
- Wafer thickness from 30 µm to 10 mm
- Straight hole cross section | no taper
- Positional accuracy ±3 µm
- No debris on back and front surfaces
- High throughput and yield

Glass


Range


Glass spacers | Interposers


Microfluidic chips & devices

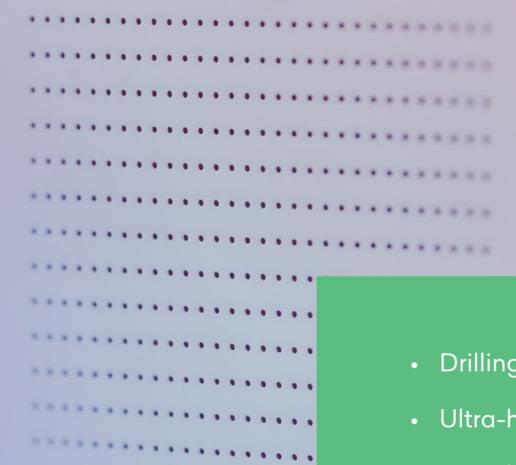
Glass guide plates for probe cards

Micro drilled glass

Packaging glass products

Glass cutting

]	
000 000 000 000 000 000		
000 000 000 000 000 000	000 000 000 000 000 000	
	000 000 000 000 000 000	


Microwell plates

Glass carrier wafers

Ceramics

services.

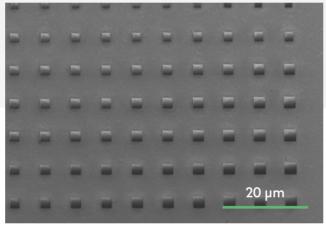
- Ultra-high precision & quality
- Irregular-shaped holes

- No melting or micro cracks

Due to their unique properties, ceramics are leading materials in communications and a top choice among many of our customers.

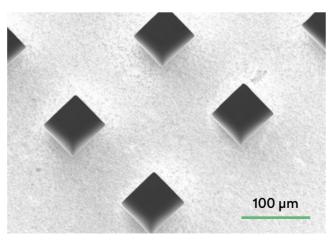
Applying our unique femtosecond laser capabilities, our processing methods enable us to offer market-leading

We are confident in offering hole diameters from a few micrometers to tens of millimeters at a highly competitive prices.

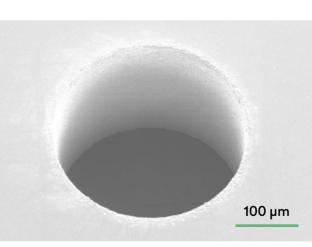

Minimal heat-affected zone

High processing speeds

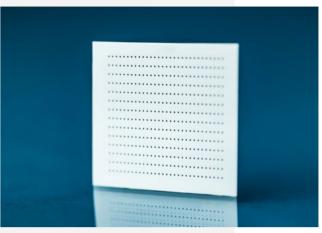
₩


Technical specifications

- Drilling of irregular-shaped holes •
- Controlled taper (positive, negative, zero taper) •
- Smooth inner-wall finish (Ra ≤ 200 nm) •
- Minimized stress area around drilled holes •
- Low chipping <20 µm (typ. none)
- High throughput and yield
- No melting or micro-cracks at the edges •
- Precise control of hole depth •
- Up to 200×200 mm (8") substrate size •
- Substrate thickness of up to 1 mm •
- Minimal or no post-processing needed •
- Ability to work with unique types of ceramics •



Ceramic drilling



Ceramic drilling

Ceramic drilling

Aplication examples

50 µm

Ceramic drilling

Ceramic guide plates for probe cards

-₩

Sapphire & ruby

We have extensive knowledge of processing for a variety of brittle materials, including sapphire and ruby.

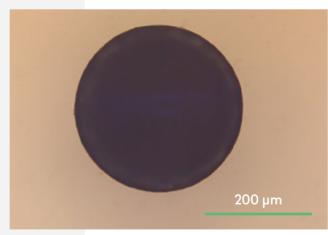
 Cutting, drilling, dicing 	• A
 Ultra-high accuracy 	• Si
Reliable process control	• In
 No cracks in hole or cut peripheries 	• M

As one of the hardest materials, sapphire is a widespread choice for companies that work with reliable and durable high-tech products.

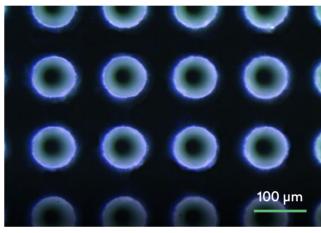
ccurate taper control

mooth edges

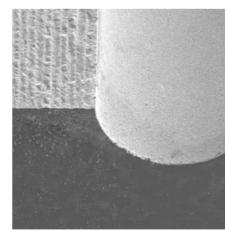
regular shape cuts


linimal or no post-processing eeded

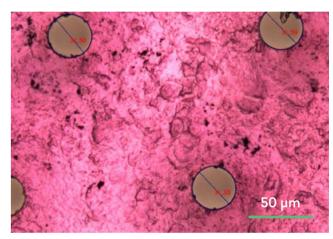
Sapphire & ruby


Drilling specifications

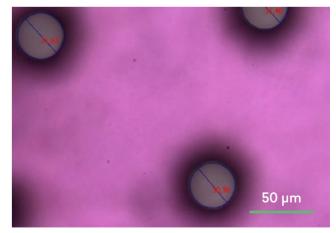
- Various hole shapes (circular, square, other) •
- Controlled taper (positive, negative, zero taper) •
- Smooth drilled inner-wall finish (Ra ≤ 200 nm) •
- Minimized stress area around drilled holes •
- High-quality lower and side walls in drilled wells •
- No melting or micro-cracks at edges •
- Precise control of hole depth •
- Aspect ratio up to 1:6 for zero-taper holes •
- High throughput and yield •
- Up to 200 mm x 200 mm (8") wafer size •
- Up to 1 mm thick sapphire •
- Ability to work with metalized and optically coated • substrates
- Minimal or no post-processing is needed •



Sapphire drilling top view



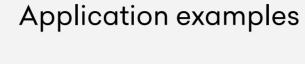
Matrix of holes in sapphire

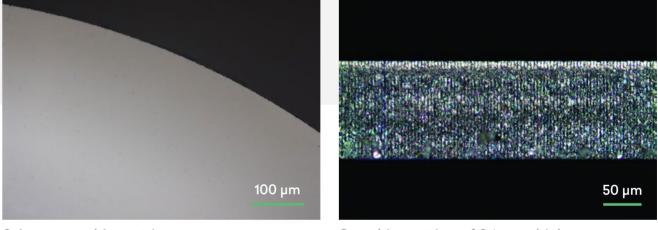


Sapphire drilling

Ruby drilling bottom view

Ruby drilling top view


 \mathbf{W}


Sapphire & ruby

Cutting specifications

- Various shapes cutting (circular, square, irregular)
- High throughput and yield
- Low chipping (typ. <20 μm)
- Smooth sidewalls (Ra <1 µm)
- High bending strength
- Up to 200 mm x 200 mm (8") wafer size
- Up to 1 mm thick sapphire
- No debris on the back and front surfaces
- Ability to work with metalized and optically coated substrates •
- Mechanical sapphire cutting (available)
- Minimal or no post-processing is needed

0,6 mm sapphire cutting

Sapphire cutting of 0,325 mm thickness. Top view

Sapphire cutting of 0,1 mm thickness. Side view

 \mathbf{W}

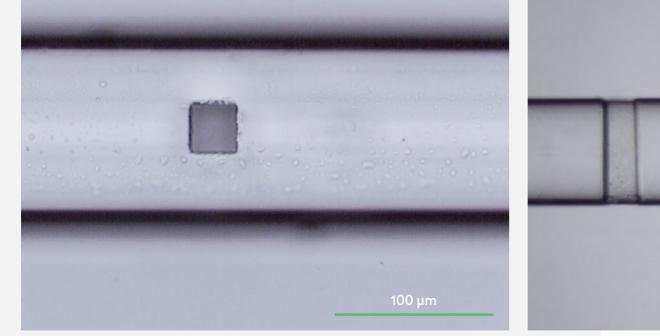
Optical fibers

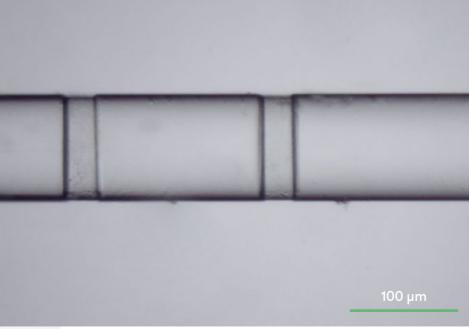
Our fiber processing expertise allows us to laser-drill optical fibers, and produce specially designed shaped tip fibers.

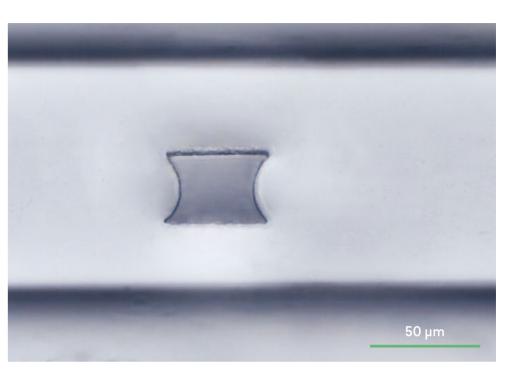
We have industry-leading fiber-processing technology and experience.

• High processing speeds

• Precise control


• Low costs




Optical fibers

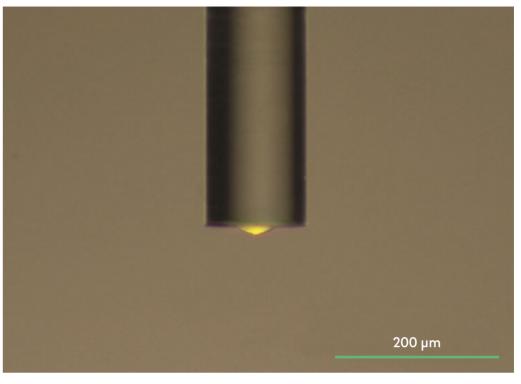
Optical fibers drilling

Laser drilling of optical fibers using femtosecond laser radiation is a state-of-the-art technique with many advantages over conventional laser processing, and mechanical drilling, enabling precise control of the process.

Features

- No melting and micro-cracks at the edges
- Hole diameter as small as 10 μm
- Precise control of taper angle and depth
- Variable geometry of holes
- Different processing parameters can be developed on request

-₩

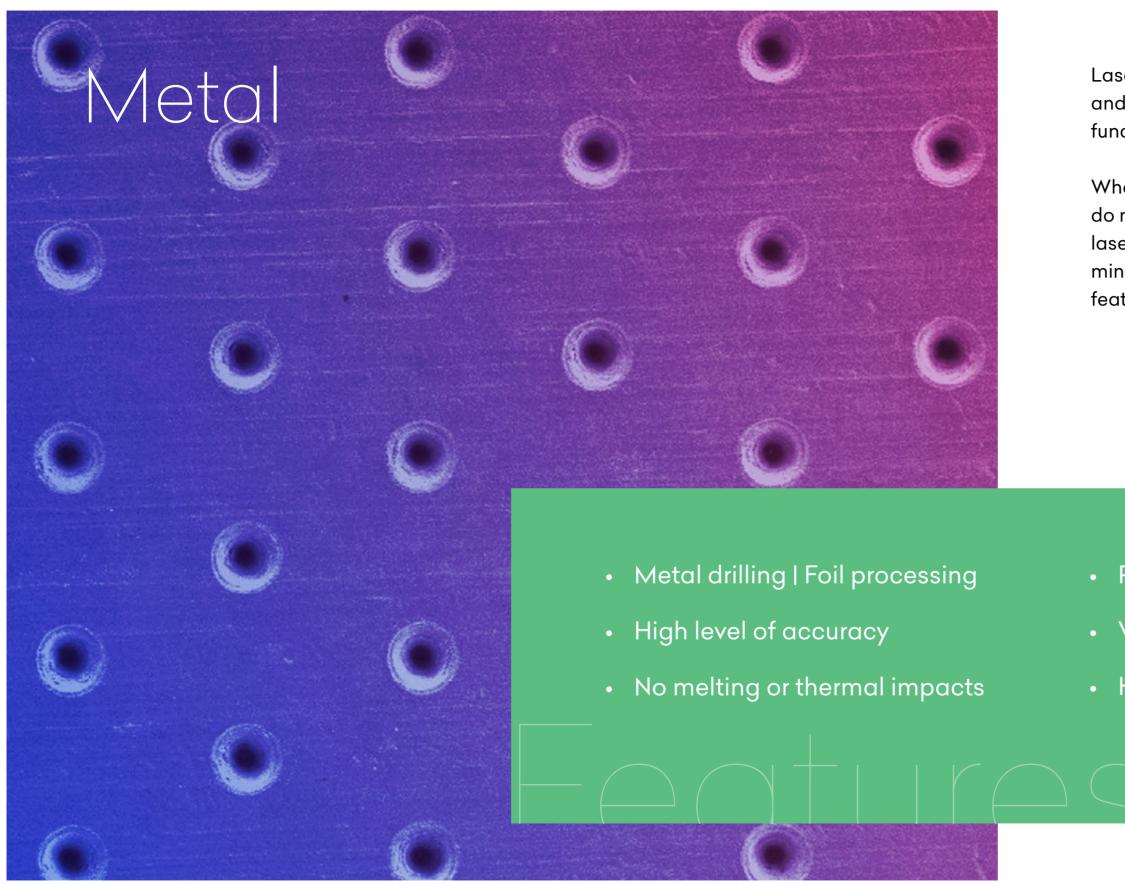

Optical Fibers

Fiber processing

Femtosecond laser custom-made fiber tips enable optimum control over beam delivery and / or increased efficiency of light collection.

Shaped optical fiber tips can be used in applications such as those for optical sensing and remote laser surgery, as well as for other applications, by controlling the angle of light leaving the fiber or directing it to one side. It provides the advantages of enhanced beam control, a robust optical system, stability, and economic advantages.

Our fiber-processing expertise allows us to produce specially designed shaped tip fibers and oversee industry-leading fiberprocessing technology and experience.


Optical fiber lens

Common types of shaped fiber tips

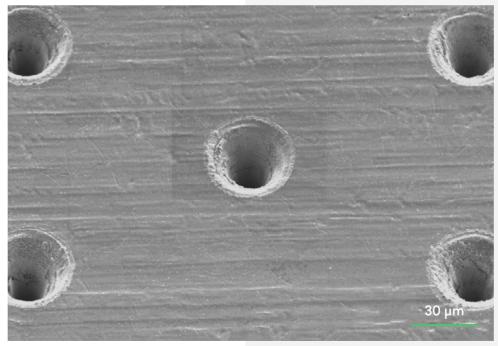
- Taper (up or down)
- Diffuser
- Side-fire
- Angled end

• Lens (convex, concave, spherical ball)

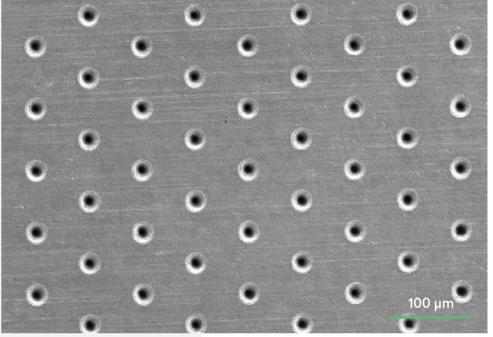
Laser drilling of metal alloys enables high quality and precision for many applications, such as filters, functional surfaces, and fuel delivery systems.

When other lasers or mechanical processing methods do not meet technical requirements, femtosecond lasers offer a unique processing method by enabling minimized heat effects while retaining a submicron feature size.

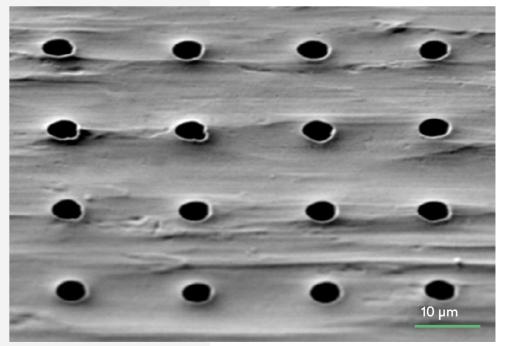
• Precise control of taper angle


- Variable geometry for holes
- High processing speeds

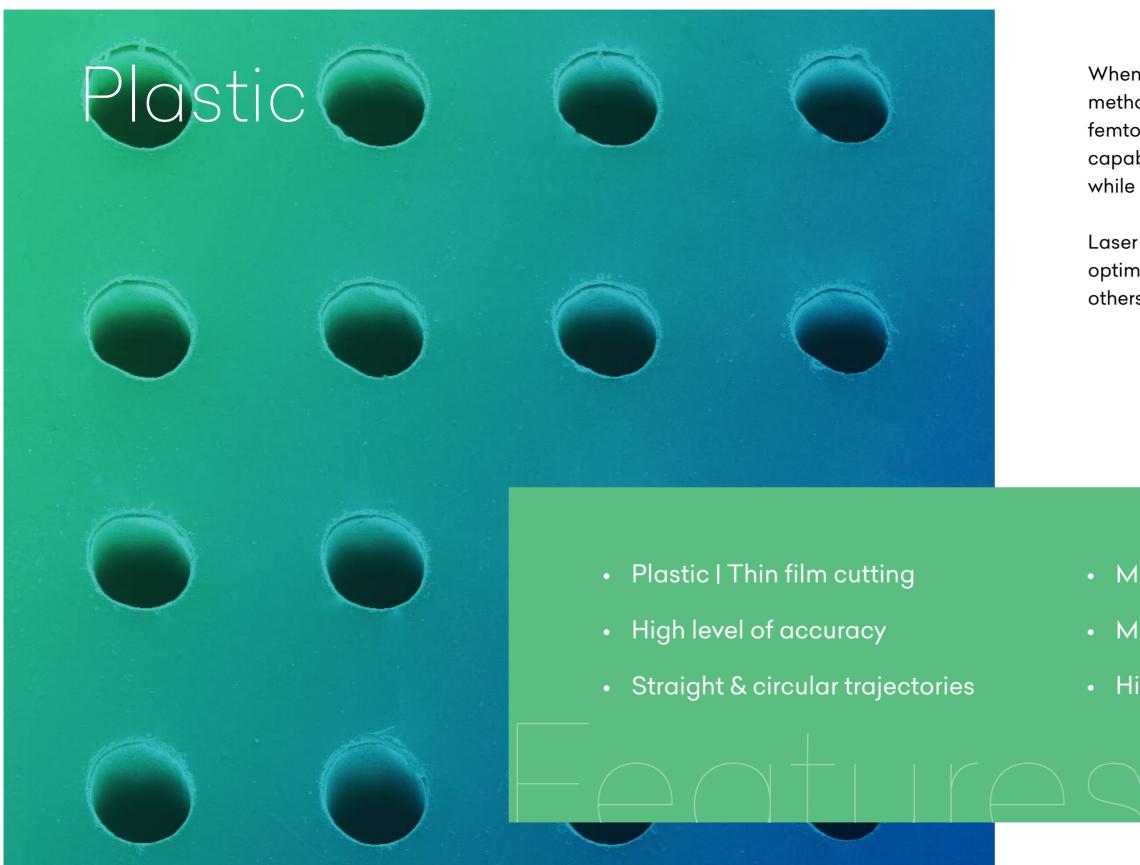
Metal


Metal drilling | Foil processing specifications

- Various shapes cutting (circular, square, irregular)
- High throughput and yield
- Minimal heat affected zone near the cutting line
- Smooth sidewalls (Ra <1 µm)
- Up to 200 mm x 200 mm (8") wafer size
- No or minimal discoloration effects
- Minimal or no post-processing needed
- Ability to work with all types of thin films



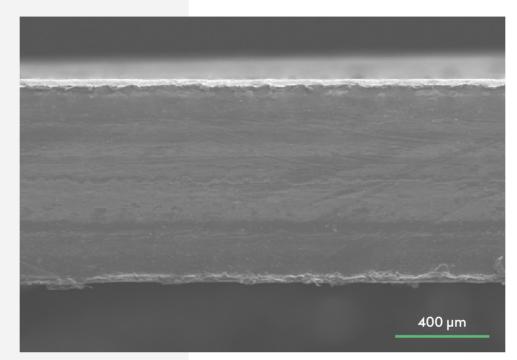
Metal steel foil drilling



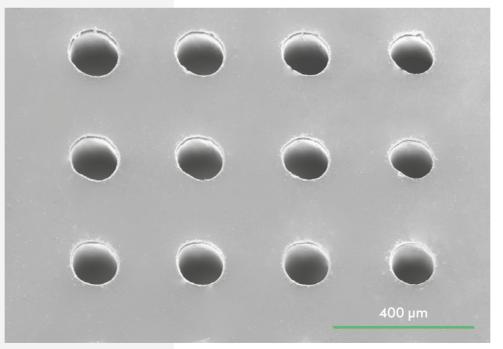
Metal drilling

Steel foil drilling

When other types of laser or mechanical processing methods do not meet technical requirements, femtosecond lasers are unique for their processing capabilities – enabling heat effects to be minimized while retaining a submicron feature size.

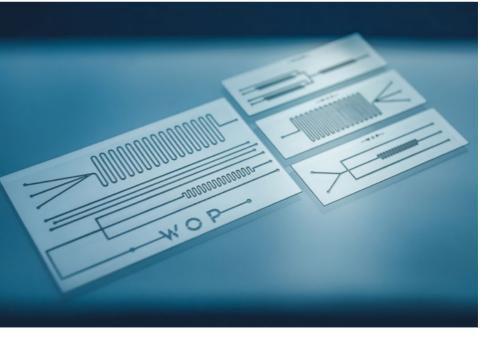

Laser cutting through a cold ablation process is optimized for each material (plastic film, metal foil, or others) used.

• Minimal or no heat-affected zones


- Minimal or no discoloration
- High processing speeds

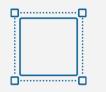
Specifications

- Various shapes cutting (circular, square, irregular)
- High throughput and yield •
- Minimal heat affected zone near the cutting line •
- Smooth sidewalls (Ra <1 µm) •
- Up to 200 mm x 200 mm (8") wafer size
- No or minimal discoloration effects •
- Minimal or no post-processing needed •
- Ability to work with all types of thin films



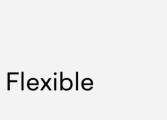
Plastic cutting

Plastic drilling


Microfluidic chips & devices

Laser workstations

Why you should buy our workstations?


Custom, results-based

Every workstation is built according to the exact results you want to achieve

Upgradeable

You can add additional functionalities over time

One workstation can be used to make several applications, not just one

Ref

Full support

We will install the workstation at your premises and train your team

References

Our systems are installed in a diverse range of businesses, research universities and organizations

1 year warranty

And after-warranty service

FemtoLAB

Femtosecond laser micromachining workstation for laboratories and R&D centers

- Fabrication of complex objects with submicron resolution
- High speed micromachining
- Ultra-high precision micromachining
- Efficient beam delivery and power control
- High-end industrial-grade femtosecond laser
- High-performance galvanometer scanners
- Object movement and laser pulse synchronization in time and space
- Unique software interface controlling all hardware units

 \mathbf{W}

Submicron resolution

High speed

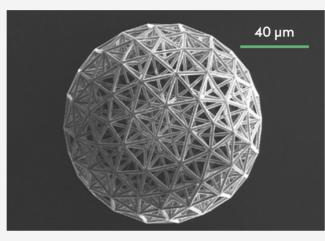
Ultra-high precision results

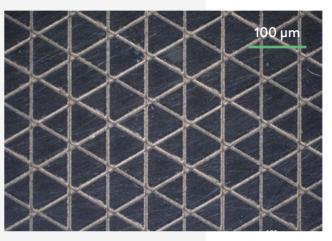
Top-quality components

Technical information

Parameter	Value
Pulse duration	40 fs – 10 ps
Repetition rate	1 Hz – 2 MHz (Single-Shot, Pulse-on-Demand, Burst Mode)
Average power	Up to 80 W
Pulse energy	Up to 2 mJ
Wavelength	1030 nm, 515 nm, 343 nm, 257 nm
Positioning accuracy	± 250 nm
Travel range	From 25×25 mm to 500×500 mm (larger on request)

Principle configurations

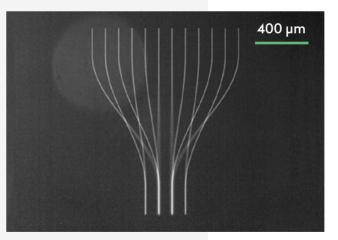

- Laser source
- Sample positioning system
- Beam delivery and scanning unit
- Laser power and polarization control
- Software for system control (autofocus and machine vision on request)
- Sample holders and special mechanics (sample handling automation on request)
- Optical table
- Enclosure (full or partial)
- Dust-removal unit
- The laser system is automated with SCA micromachining software. This software is an essential part of the laser system and is not sold separately.


FemtoLAB

Applications

- Micro cutting
- Micro scribing
- Micro drilling
- Micro marking
- Laser surface structuring
- Selective laser ablation •
- 3D additive manufacturing (MPP) •
- Micro welding

Examples



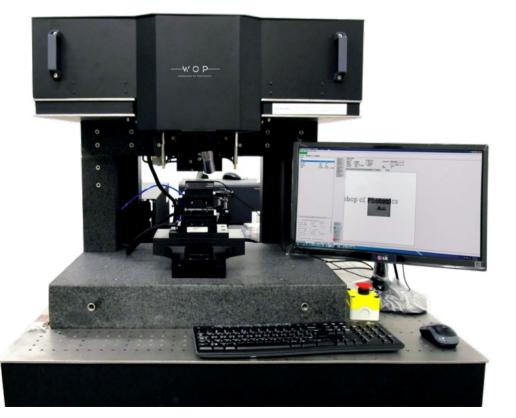
Multiphoton polymerization (MPP)

Micro welding | Glass to metal

Micro drilling | Glass



Waveguide writing


Micro drilling | Fiber

Selective laser ablation

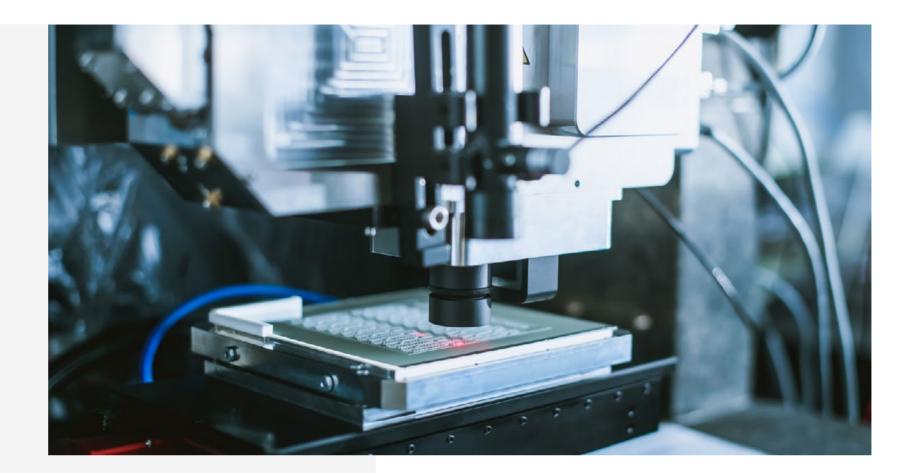
FemtoLAB KIT

A solution for scientific and industrial customers that already have a laser source

- A solution without a laser source
- Fabrication of complex objects with submicron resolution
- High-speed micromachining
- High-accuracy XYZ sample positioning
- Custom beam delivery and shaping for selected wavelengths
- Control of the entire system through a single-screen interface
- Easily upgradeable, custom design

Submicron resolution

High speed



Ultra-high precision results

FemtoLAB KIT

Principle configurations

- Laser source (provided by customer) ٠
- Sample positioning system •
- Beam delivery and scanning unit •
- Laser power and polarization control unit •
- System control software (auto-focus and • machine vision on request)
- Sample holders and special mechanics • (sample handling automation on request)
- Optical table •
- Enclosure (full or partial) •
- Dust removal unit
- Laser system is automated by SCA • micromachining software

- Micro drilling
- Micro cutting
- Micro welding
- Micro marking
- 3D additive manufacturing (MPP)

Applications:


• Laser surface structuring

FemtoMPP

Multiphoton polymerization (MPP) technology

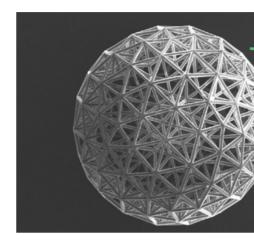
Cost effective 3D additive solution for customers in science and industry

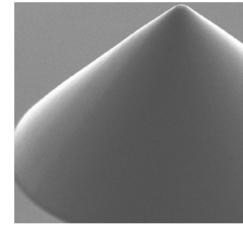
- Finest resolution
- Cost-effective design
- Small footprint
- Fabrication of complex & transparent 3D objects
- Variety of polymers available
- Low operating and maintenance cost

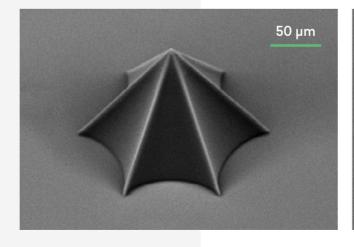
Finest resolution

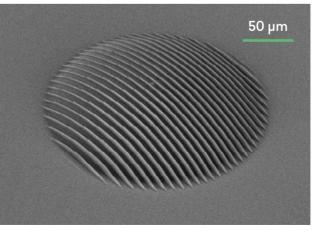
Cost effective

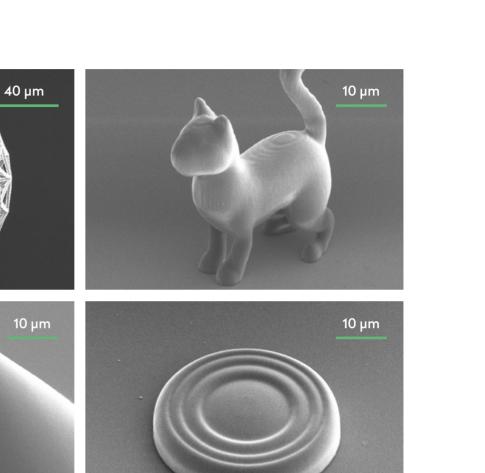
Small footprint

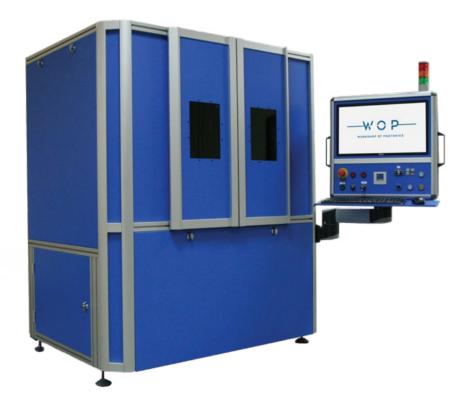

Complex 3D objects


FemtoMPP


Specifications


- Writing resolution: 200 nm 10 μm
- Variety of polymers available
- Stitching error-free laser writing
- Ability to change writing resolution during writing process
- Fabrication of complex 3D objects and arbitrary microstructures
- Repeatability and stable workflow
- Possibility to integrate new structures into existing ones


Examples



FemtoGLASS

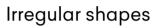
Glass & sapphire cutting workstation for industry

- Ultra-fast thin (30 µm to 2 mm) glass & sapphire cutting
- High processing speeds up to 1000 mm/s
- Irregular shapes

0


- Inner and outer contours
- Easy breaking for non-tempered glass and self-breaking for tempered glass

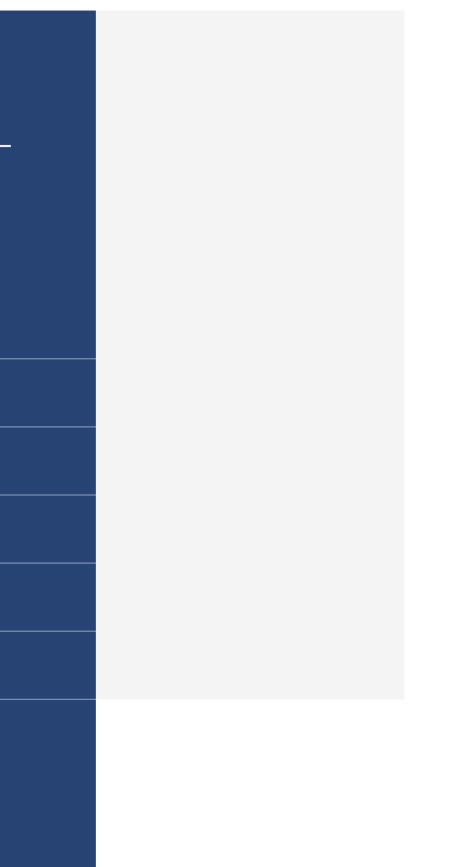
 \mathbf{W}


Type of glass

- Non-tempered glass
- Tempered glass
- Sapphire

Thin glass & sapphire

Quality of cut


- Cut width less than 1 µm
- Low chipping <10 µm
- No post-processing required

FemtoGLASS

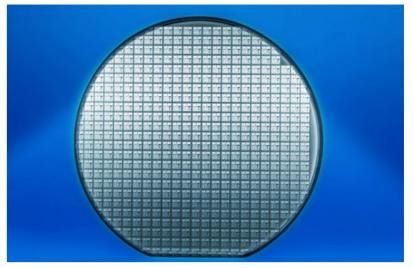
WOP Glass cutting workstation **outperforms** other glass-cutting methods:

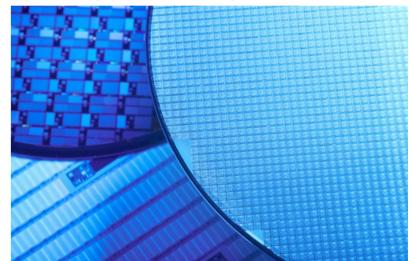
	Blade dicing	Stealth laser dicing	WOP laser dicing
Glass thickness	2 – 19 mm	200 µm – 10 mm	30 µm – 2 mm
Glass type	All types	Non-tempered Sapphire	Tempered Non-tempered Sapphire
Cutting speed	Up to 100 mm/s	Up to 300 mm/s	Up to 1000 mm/s
Possible shapes	Straight cuts only	T-shape and round shapes possible	Any shape possible
Surface chipping	<200 µm	<50 μm	<10 µm

FemtoGLASS

Our technology is used for:

Mobile phone sapphire screens


Augmented reality, smart glasses screens


Mobile phones sapphire buttons

Mobile phones camera lenses

Wafer level glass product dicing

Microoptics elements

Technology for cutting glass & sapphire

WORKSHOP OF PHOTONICS

Technology for cutting glass Sapphire

- Ultra-fast thin (30 µm to 2 mm) glass & sapphire cutting
- High process speeds up to 1000 mm/s
- Cutting of irregular shapes

High speed

Ultra-high precision & quality

Irregular shapes

Thin glass & sapphire

• Inner and outer contours

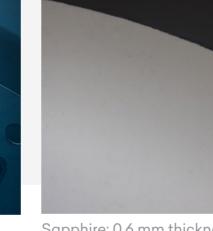
- Easy breaking for non-tempered glass and self-breaking for tempered glass
- High bending strength

 \mathbf{W}

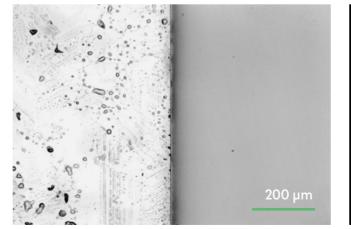
Technology for cutting glass & sapphire

Solutions for system integrators

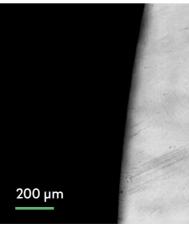
- Optimized for 1028-1064 nm wavelength (515-532 on request)
- Sealed monolithic housing ٠
- Integrated monitored linear axis with 15 ٠ mm travel (eliminates need for external Z axis)
- Optional external Machine vision unit •
- Optional alignment module for adjustment •
- Packages include optical module and • technology license
- Dimensions HxWxD: 395x240x95 mm

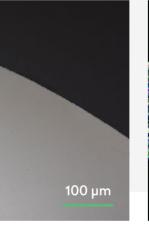

Type of glass

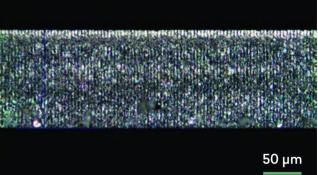
- Non-tempered glass
- Tempered glass
- Sapphire •


Glass cutting

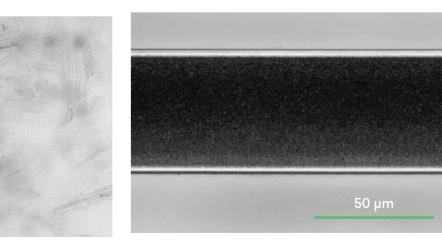
Quality of cut


- Cut width less than 1 µm
- Low chipping <10 µm ٠
- No post-processing required •
- Smooth side walls after breaking, Ra < 1 µm •


Sapphire: 0.6 mm thickness



Tempered glass: 0.55 mm thickness



Sapphire: 0.325 mm thickness

Sapphire: 0.1 mm thickness

Tempered glass: 0.55 mm thickness

 \mathbf{W}

Space-variant retarders

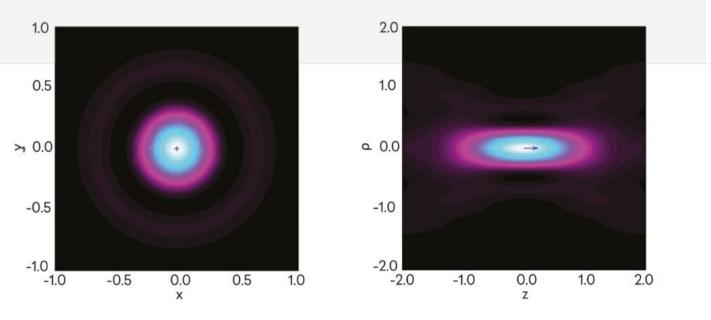
S-waveplate

Converts linear polarization to radial or azimuthal polarization

WHY CHOOSE AN S-WAVEPLATE?

- Best choice for converting:
- 94% transmission @ 1030 nm (no AR coating)
- needed
- Suitable for high LIDT applications and high-power lasers
- Reliable and resistant surface the structure is inside the bulk

- linear polarization to radial or azimuthal polarization
- circular polarization to an optical vortex
- Stand-alone no additional optical elements


S-waveplate

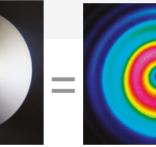
S-waveplate

This comprises a space-variant retarder that converts linear polarization to radial or azimuthal polarization and circular polarization to an optical vortex. The fabrication of S-waveplates is based on the inscription of self-organized nanograting's inside fused silica glass using a femtosecond laser.

S-waveplates can be beneficial for polarization-sensitive applications. For example, a radially polarized beam is more efficient at drilling and cutting high-aspect-ratio features in metals. Vector beams are also applicable in optical tweezers, laser micromachining, STED microscopy, and two-photon-excitation fluorescence microscopy.

Application example:

Normalized intensity of the longitudinal (z-) component of a high-NA (1.32) radially polarized beam at focus and through focus. Intensities of 0 and 1 correspond to black and white, respectively. The units of x, y, ρ , and z are in wavelengths.²


¹ Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass

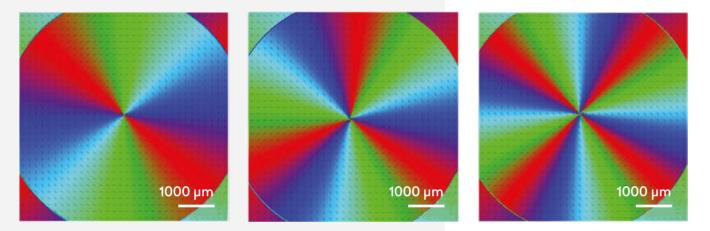
After linear polarizer

Linear polarization

S-waveplate

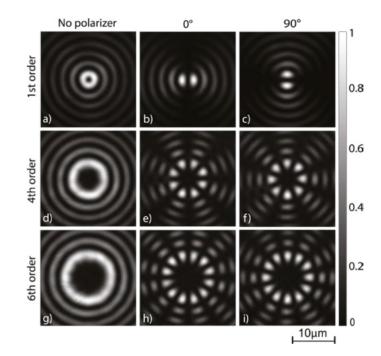
Martynas Beresna, Mindaugas Gecevičius, Peter G. Kazansky, and Titas Gertus.

Radial/azimuthal polarization

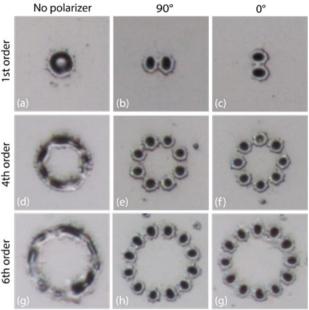

Beams with radial or azimuthal polarization attract significant interest due to having unique optical properties associated with their inherent symmetry. Such beams enable resolution below the diffraction limit and interact without the undesirable anisotropy produced by linearly polarized light.¹

40

² Focusing of high numerical aperture cylindrical-vector beams KS Youngworth, TG Brown - Optics Express, 2000


Higher-order S-waveplate

Higher-order S-waveplate converts linear polarization to higher-order polarization patterns.


Examples of fast axis patterns for 2nd (left), 3rd (center) and 4th (right) order S-Waveplates (measured with Hinds Instruments Exicor MicroImager).

Combining HOS with an axicon enables vector Bessel beams (VBBs) to be obtained that can be used for the efficient drilling of transparent materials.

Beam spatial intensity profiles of the 1'st, 4'th and 6'th order vector Bessel-Gauss beams (a, d, g) and their single polarization component spatial intensity distribution when polarizer was rotated at two different angles. When the polarizer was parallel to incoming polarization (0 deg) beam intensity profiles are depicted in second column and when polarizer was perpendicular (90 deg) beams are depicted in third column.³

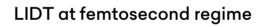
³ Justas Baltrukonis, Orestas Ulcinas, Pavel Gotovski, Sergej Orlov, Vytautas Jukna, "Realization of higher order vector Bessel beams for transparent material processing applications," Proc. SPIE 11268, Laser-based Micro- and Nanoprocessing XIV, 112681D (2 March 2020); doi: 10.1117/12.2545093

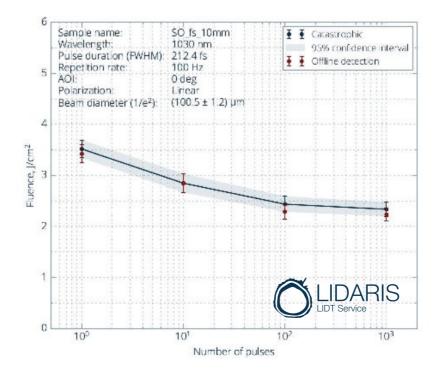
5µm

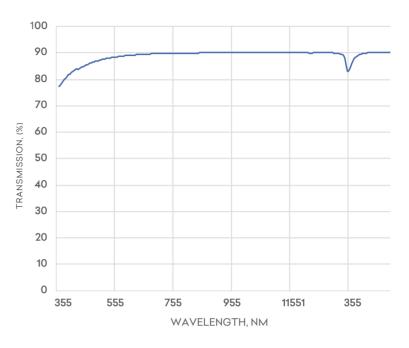
Transparent material modification on the D263t glass sample surface with higher order VBB's and their transverse polarization components. 1'st, 4'th and 6'th order VBB damages are depicted in a, d, and g respectively. The single polarization component of the appropriate VBB are depicted in second and third column.³

S-waveplate

Technical features

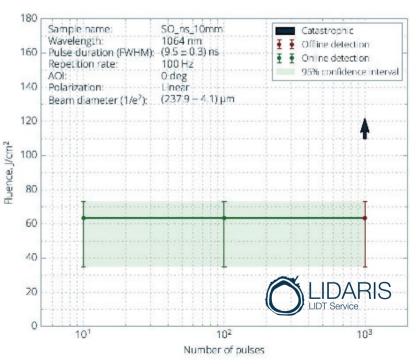

- LIDT | High damage threshold:
 - **63,4 J/cm²** @ 1064 nm, 10 ns **2,2 J/cm²** @ 1030 nm, 212 fs
- High transmission (no AR coating):


94% @ 1030 nm, 92% @ 515 nm, 85% @ 343 nm of most SS lasers


• Large aperture possible - up to 15 mm

Application examples

- STED microscopy
- Micromachining
- Micro drilling high-aspect-ratio channels
- Generate any cylindrical vector vortex
- Multiple particle trapping
- Micro-mill is driven by optical tweezers
- Use as an intracavity polarization-controlling element in cladding-pumped ytterbium-doped fiber laser for radially polarized output beam generation



Transmission of uncoated s-waveplate

LIDT at nanosecond regime

Circular grating Flat axicon

Transforms Gaussian beam into a Bessel-Gauss beam

- handle

WHY IS THIS BETTER THAN AN ORDINARY AXICON?

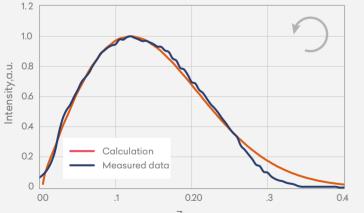
• Positive and negative Bessel-Gauss zones, 3-in-1 usage possibilities

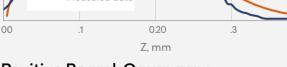
• Suitable for high-LIDT applications and high-power lasers

• Flat optics - saves space, easy to

• Reliable and resistant surface - the structure is inside the bulk

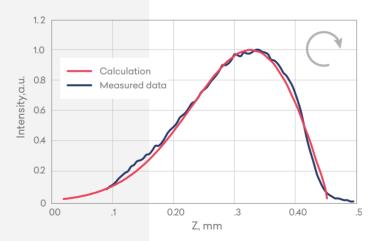
 \mathbf{W}

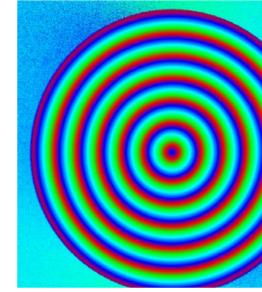

Description


A circular grating (a.k.a flat axicon) is a space-variant retarder that transforms a Gaussian beam into a Bessel-Gauss beam.

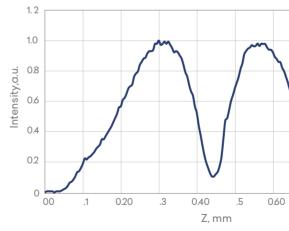
This product stands out for its high damage threshold compared with alternative devices. It has a laser irradiation resistance similar to that for uncoated fused silica substrates.

The structure of the element is unique due to the formation of birefringent nanogratings inside a bulk of fused silica glass, sensitive to the incident polarization.


A circular grating can generate both positive and negative Bessel-Gauss zones, with LHCP and RHCP polarizations respectively. Also, positive and negative zones simultaneously with linear polarization. The working regime depends only on incident polarization.


Positive Bessel-Gauss zone

Incident light polarization > left-hand circular - emulating convex axicon.



Negative Bessel-Gauss zone

Incident light polarization > right-hand circular emulating concave axicon.

Fast axis distribution across the element (measured with HINDS MicroImager)

Positive & Negative Bessel-Gauss zones

Incident light polarization > linear - emulating both axicons simultaneously.

Technical features

- Materials: UVFS. IRFS
- Wavelength range: 330nm to 2000 nm
- Min apex angle: 176-179.9° @1030 nm
- Diffraction efficiency: up to 95%
- Element size: up to 15 mm
- Coating (optional): AR/AR coating
- Uncertainty of cone tip diameter ~20 µm
- LIDT | High damage threshold: 63 J/cm @1064 nm, 10ns; 2 J/cm @1030 nm, 212fs
- Transmission (no AR coating): 85% @343 nm, 92% @515 nm, 94% @1030 nm

Applications

- Micromachining
- Ultra-high aspect ratio micro holes drilling
- High 90% efficiency Bragg gratings
- Cutting of transparent materials

Flattop

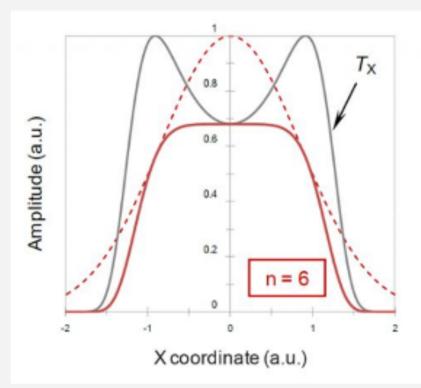
Transforms Gaussian beam to a Flat-Top beam

WHY CHOOSE THIS PRODUCT?

- 100% suitable for your application designed according to your laser beam specifications
- Suitable for high-LIDT applications and high-power lasers
- Conversion efficiency up to 70% (wavelength dependent)
- is 6 mm)

• Wavelength range from 300 nm to 2 µm

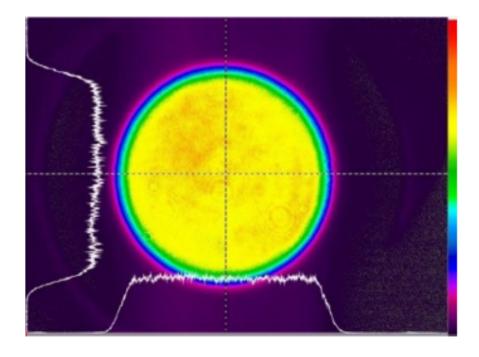
• Large aperture (up to 15 mm; standard


Flattop

Description

Space-variant waveplate for flat-top conversion is beam-shaping optics. A combination of a space-variant waveplate and a polarizer acts as a space-variant transmission filter that converts a Gaussian beam spot profile into a flat-top beam with equal energy distribution.

It is a space-variant phase retardation plate inscribed inside a bulk of fused silica glass by femtosecond laser pulses. A well-known fact is that flat-top intensity distributions have noticeable advantages in micromachining in terms of efficiency and quality compared to Gaussian beam profiles.¹


A converter enables on-the-fly adjustment of the beam shape from flat-top to a shape with a dip in the middle. The converter is compatible with high-power ultrashort lasers.

Flat-top intensity distribution after converter

¹ Homburg, O., & Mitra, T. (2012). Gaussian-to-top-hat beam shaping: an overview of parameters, methods, and applications. Laser Resonators, Microresonators, and Beam Control XIV. doi:10.1117/12.907914

One-dimensional initial Gaussian function (dashed red line), 6-th order super-Gaussian function (solid red line) and calculated transmission function TX (solid grey line)

Contact us!

WORKSHOP OF PHOTONICS

WORKSHOP OF PHOTONICS Mokslininku st. 6A 08412 Vilnius, Lithuania

+370 5 215 7551 info@wophotonics.com www.wophotonics.com

