

PVAS-2TE-5-0.1×0.1-T08-wAl₂O₃-70 - ENGINEERING SAMPLE

Type II superlattice, two-stage thermoelectrically cooled, photovoltaic detector

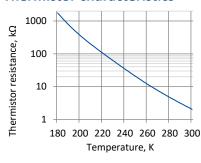
 $\textbf{PVAS-2TE-5-0.1} \times \textbf{0.1-T08-wAl}_2\textbf{0}_3\textbf{-70} \text{ is a Type II superlattice two-stage thermoelectrically cooled IR photovoltaic detector, with excellent parameters. } 3^{\circ} \text{ wedged sapphire window } (\text{wAl}_2\textbf{0}_3) \text{ prevents unwanted interference effects. This detector does not contain } 1 \times 10^{-10} \text{ m}^{-1} \text{ m}^{$ mercury or cadmium and is compliant with the RoHS Directive.

Spectral response ($T_a = 20$ °C, $V_b = 0$ mV)

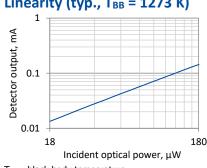
Exemplary spectral detectivity, the spectral response of delivered devices may differ.

Specification ($T_a = 20$ °C, $V_b = 0$ mV)

Parameter	Detector type
	PVAS-2TE-5-0.1×0.1-TO8-wAl ₂ O ₃ -70
Active element material	epitaxial superlattice heterostructure
Cut-on wavelength λ _{cut-on} (10%), μm	1.7±0.2
Peak wavelength λ _{peak} , μm	4.0±0.3
Cut-off wavelength $\lambda_{\text{cut-off}}$ (10%), μ m	5.8±0.2
Detectivity D*(λ _{peak}), cm·Hz ^{1/2} /W	~9.0×10 ⁹
Current responsivity $R_i(\lambda_{peak})$, A/W	~1.4
Time constant т, ns	~4
Resistance R, Ω	~5k
Active element temperature T _{det} , K	~230
Active area A, mm×mm	0.1×0.1
Package	TO8
Acceptance angle Φ	~70°
Window	wAl_2O_3

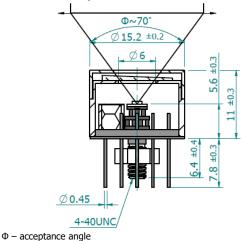

Features

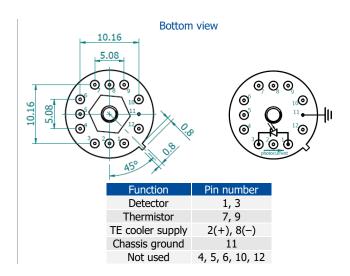
- Wide spectral range from 1.7 to 5.8 µm
- High responsivity
- **Excellent linearity**
- No bias required
- No 1/f noise
- Environmentally friendly


Two-stage thermoelectric cooler parameters

Parameter	Value
T _{det} , K	~230
V _{max} , V	1.3
I _{max} , A	1.2
Q _{max} , W	0.36

Thermistor characteristics


Linearity (typ., $T_{BB} = 1273 \text{ K}$)



T_{BB} – black body temperature

Dedicated preamplifiers

programmable PIP

standard MIP

small SIP-TO8

Precautions for use and storage

- Heatsink with thermal resistance of ~2 K/W is necessary to dissipate heat generated by 2TE cooler.
- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature.
- Beam power limitations:
 - irradiance with CW or single pulse longer than 1 μs irradiance on the apparent optical active area must not exceed 100 W/cm²,
 - irradiance of the pulse shorter than 1 μs must not exceed 1 MW/cm².
- Storage in dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.