# π**Shaper 12\_12**

Series of high efficient Beam Shapers Converting Gaussian to Flat-top profile Lasers of UV, Visible and NIR spectrum



With these unique tools it is possible to convert a single mode or multimode laser beam of similar to Gaussian intensity profile into a collimated Flat-top beam with *nearly 100% efficiency*.

Telescope and Collimator versions

Water cooled for powerful kW lasers

High resistant for high peak power lasers

 $\pi$ *Shaper* produces collimated Flat-top beam (like Greek letter  $\pi$ ) over a large working distance. This enables to manipulate and re-size the beam with conventional imaging optics.

Almost the same effective sizes of input and output beams let it easy to integrate  $\pi$ *Shaper* in your application.

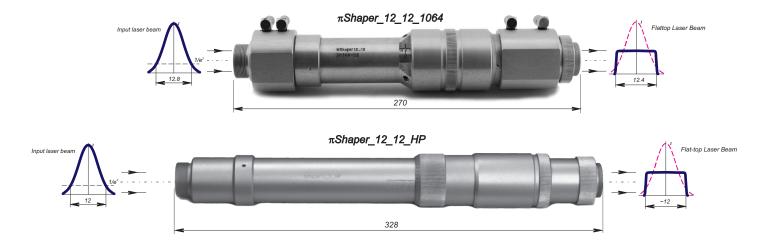
Applications:

- Free Electron Lasers
- Fluorescence Technologies
- Flying Plate Technique
- Display Making Technologies
- Mass-Spectrometry
- Ultrashort Pulse Laser Pumping
- MOPA Lasers
- Material Processing

# Beam Shaping never was so easy!

## No more energy loss!

## **Technical Specifications**


### Common for all $\pi$ Shaper 12\_12 models:

| Input beam     | $TEM_{00}$ or multimode with Gaussian or similar intensity profile                                                                                                                                                                                                                        |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Output beam    | - Collimated<br>- Flat-top, uniformity within 5%<br>- High edge steepness                                                                                                                                                                                                                 |  |  |  |  |  |
| Other features | <ul> <li>Compact design suitable for scientific and industrial applications</li> <li>High resistance for high peak power pulse lasers</li> <li>Water cooling, option for CW (or average) power &gt; 500 W</li> <li>Long working distance</li> <li>Protection windows, optional</li> </ul> |  |  |  |  |  |
| Mounting       | Input: Outer Thread M27x1 Output: Outer Thread M33x1<br>Adaptor M33x1 -> M27x1 (Outer)                                                                                                                                                                                                    |  |  |  |  |  |

#### Features

|            | <b>Input beam</b><br>all values at 1/e <sup>2</sup> | Output beam<br>Diameter, mm<br>(FWHM) | Spectral range, nm | Overall dimensions, mm |        |           | Applications                                       |
|------------|-----------------------------------------------------|---------------------------------------|--------------------|------------------------|--------|-----------|----------------------------------------------------|
| Model*     |                                                     |                                       |                    | Diameter               | Length | Weight, g | based on                                           |
| _1064      | - collimated<br>- Dia 12.8 – 13.0 mm                | 12.4                                  |                    | 49                     | 270    | 530       | Nd:YAG, Fiber lasers,                              |
| _1064_HP   | - collimated<br>- Dia 12.0 – 12.1 mm                | 12.0                                  |                    | 42                     | 328    | 530       | Other NIR Lasers                                   |
| _1064_HP_W | - collimated<br>- Dia 12.0 – 12.1 mm                | 12.0                                  | 1020-1100          | 49                     | 360    | 590       | High-Power USP lasers<br>Water cooled system       |
| _1064_C    | - divergent<br>- 2 $\Theta$ = 58 mrad               | 12.0                                  | 12.0               |                        | 285    | 480       | Nd:YAG, Fiber lasers,<br>Other NIR Lasers          |
| _TIS_HP    | - collimated<br>- Dia 12.0 – 12.1 mm                | 12.0                                  | 700 - 900          | 42                     | 328    | 530       | Ti:Sapphire lasers,<br>Other NIR Lasers            |
| _532       | - collimated<br>- Dia 12.8 – 13.0 mm                | 11.8                                  | 515 - 550          | 49                     | 270    | 530       | 2 <sup>nd</sup> Harmonic Nd:YAG,<br>Visible Lasers |
| _532_HP    | - collimated<br>- Dia 12.0 – 12.1 mm                | 12.0                                  | 512 - 550          | 42                     | 328    | 530       |                                                    |
| _355_HP    | - collimated<br>- Dia 12.0 – 12.1 mm                | 11.3                                  | 330 - 380          | 42                     | 328    | 530       | 3 <sup>rd</sup> Harmonic Nd:YAG,<br>UV Lasers      |
| _266       | - collimated<br>- Dia 12.6 – 12.8 mm                | 10.6                                  |                    | 49                     | 270    | 530       | 4 <sup>th</sup> Harmonic Nd:YAG,<br>UV Lasers      |
| _266_HP    | - collimated<br>- Dia 12.0 – 12.1 mm                | 10.6                                  | 250 - 270          | 42                     | 328    | 530       |                                                    |
| _266_C     | - divergent<br>- 2 $\Theta$ = 60 mrad               | 12.0                                  | 12.0               |                        | 285    | 480       |                                                    |

 Basic models are Telescopes of Galilean type (without internal focus), models with index \_HP are versions for high peak power lasers, models with index \_C are Collimators without internal focus.





