SO Photonicities

Phekda Series Phekda-NIR Series Product Sheet

Introduction

The Phekda & Phekda-NIR (PD & PD-NIR) Series spectrometers consist of CCD, CMOS, InGaAs sensors and 32-bit RISC microcontrollers. This series features a new T-R-T (Transmissive-Reflection-Transmissive) optical design, simple and optimized for LIBS or high resolution requirement. The optical bench is very rigid and stable for measurement system and has outstanding stability of thermo-hydro variation, vibration and shock on resolution and wavelength shift performance.

The PD & PD-NIR series uses a reflection grating and Czerny-Turner optical design to deliver high resolution, high sensitivity, low dispersion, and high-speed spectrum response.

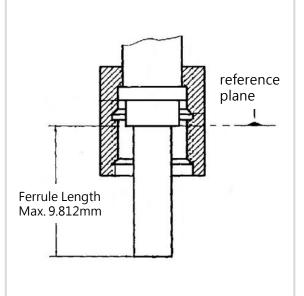
The PD & PD-NIR series is powered by USB and connected to a computer via USB. In addition, it provides an interface with six I/O pins for connecting external devices.

This document provides detailed information on the PD & PD-NIR series and how to work with it.

With RISC microcontrollers, the PD & PD-NIR Series spectrometers can be operated using the software provided by OtO Photonics.

This document is intended for sales and marketing purposes only and may not serve as a product specification document for shipping or contracts. If a customer requires a formal document for product approval or incoming quality control (IQC), OtO can discuss the specification details with the customer and provide a formal document for such purposes.

PD & PD-NIR Product Sheet


Precautions

Picture

Description

Screw in the fiber optic connector with fingers. Do not use any tool to tighten it. Using tools such as wrenches to tighten the connector may cause the connector to press against and damage the inlet slit of the spectrometer. Such damage is not covered by the warranty.

In cases where the connector needs to be firmly in place for long-term use, it is advised to apply a little glue to where the SMA905 connector is connected to the spectrometer.

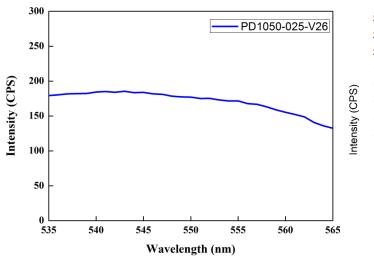
The SMA905 connectors on all spectrometers made by OtO Photonics is manufactured in accordance with international standards. Customers should ensure that the ferrule length of the fiber used is not longer than 9.812mm to avoid damaging the slit in the SMA950 connector. Such damage is not covered by the warranty.

PD & PD-NIR Product Sheet

Ov	verview	
1.1	PD & PD-NIR Series	P4
1.2	Response Curves	P5
Ke	y Features	
2.1	Characteristics	P7
2.2	Features	P8
Mo	echanical Designs	
3.1	Outlines and Dimensions	P9
3.2	Electronic Output Pin Assignments	P10
3.3	LED Indicators	P11
3.4	Sensor Overview	P12
Or	perations	
4.1	Pixel Signal Intensity	P13
4.2	Digital Input/Output	P13
4.3	Trigger Modes	P15
4.4	Ring Buffer	P18
US	SB Data Transfer and Controls	P19

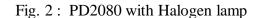
PD & PD-NIR Product Sheet

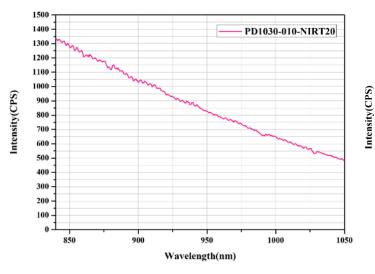
Overview


► 1.1 PD & PD-NIR Series Products

	Model	Wavelength Range(nm)													
							20		SNR	Dynamic		A/D	Stray	Thermal	
		535	548	535	625	802	840	1522		Dynamic Range ^{*1} A/D	Light	Stability			
		~	~	~	~	~	~	~							
		650	658	685	818	878	<u> 1050</u>	1578							
DD	PD1030	√	√	√		V	V		350		4600(2 /3100(z	10MH [°]		N/A	N/A
	PD1110	√	√		√	√			500		47	00		0.2%	N/A
	PD1080 PD2080	٦/	√		√	√			350		3500		16 bits	0.2%	N/A
PD- NIR Series	PD2570							√	Gain	Low Gain 4000	High Gain 5600	Low Gain 8200		0.2%	N/A
PD- NIR	PD1080 PD2080	√			,			√	3 High Gain	50 Low Gain	47 35 High Gain	00 00 Low Gain		0.2%	

^{*1.} The dynamic range is calculated using the upper limit dark noise value of multiple spectrometers.


PD & PD-NIR Product Sheet


► 1.2 Wavelength Response Curve

2400 PD1080/Slit 25um/562-660nm 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 570 610 Wavelength (nm)

Fig. 1: PD1050 with Halogen lamp

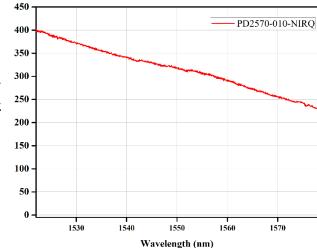


Fig. 3: PD1030-010-NIRT20 鹵燈響應

Fig. 4: PD2570-010-NIRQ with Halogen lamp

PD & PD-NIR Product Sheet

Key Features

- **▶** 2.1 Characteristics
- PD Series: Wavelength range for LIBS application, 535~565nm, 535~650nm. Wavelength range customizable from 400 to 1100nm.
- PD-NIR Series: Wavelength range for LIBS application, 1522~1578 nm. Wavelength range customizable from 900 to 1700nm.
- High resolution PD-V25 & PD-V30 < 0.1nm @slit 10um.

PD-V32 <0.35nm@slit 25um PD-NIRQ <0.25nm@slit 10um

- A variety of sensor can be chosen for specific application:
 - □ 2048 Pixels CCD/CMOS Sensor
 - 4096 Pixels CMOS Sensor
 - □ 512 Pixels InGaAs Sensor
- Customizable modular components: grating, sensor, and inlet slit
- Integration time: PD1050: 5ms~65s, PD1030/PD1080: 0.1ms~65s, PD2570: 0.1ms~24s
- 16 bit, 15MHz A/D converter
- USB 2.0 @ 480 Mbps (High Speed)
- An 8-pin external I/O port for connecting external devices
 - □ 6 pins for digital I/O data acquisition
- Plug-n-Play computer application support
- Ultra-precise continuous exposure, holding up to 4,000 records of spectrum data in memory
- Flash ROM storage
 - □ Wavelength calibration parameters
 - □ Linearity correction parameters
 - □ Intensity correction parameters

PD & PD-NIR Product Sheet

▶ 2.2 Specifications

Too to		Specifications							
Featu	ires	PD1030 PD1050 PD1080/2080			PD2	PD2570			
Sens	or	2048 Pixel 2048 Pixel 4096 Pixel 512 Pixel In C							
Dark n (Avera		14(2.5MHz) 21(10MHz)	14	19	High Gain 11	Low Gain 7			
Dynar Ranş		4600(2.5MHz) /3100(10MHz) 4700 3500		High Gain 5600	Low Gain 8200				
SNI	R	350	500	High Gain 2500	Low Gain 4000				
Wavele Rang	_	customiza	ble from 400	customizable from 900nn-1700nm					
Optical system of	characteristics	f/#: 5, NA: 0.1 Effective focal length (R1-R2): 85-101.5mm							
Optical o	design	Czerny-Turner optical design, 2nd and 3rd harmonics removed							
Dimens	sions	180 (L) x 175 (W) x 60.7 (H) mm							
Slit w	idth	10/25μm							
Integratio	on time	0.1ms`65s 5ms~65s 0.1ms~65s 0.1ms~24s							
Resolution	(FWHM)	Depends on the combination of slit, grating, and wavelength range depends							
Fiber optic	interface	SMA905, FCPC							
	Storage temperature	-30°C to +70°C							
Environmental requirements	Operating temperature	0°C to +50°C							
	Relative Humidity	0% - 90% non-condensing							
Data transfer	r interface	USB 2.0 @ 480 Mbps							
Power spec	ifications	Power supply: 300mA at +5 VDC, Voltage: 4.75-5.25							

PD & PD-NIR Product Sheet

Mechanical Designs

▶ 3.1 Outlines and Dimensions

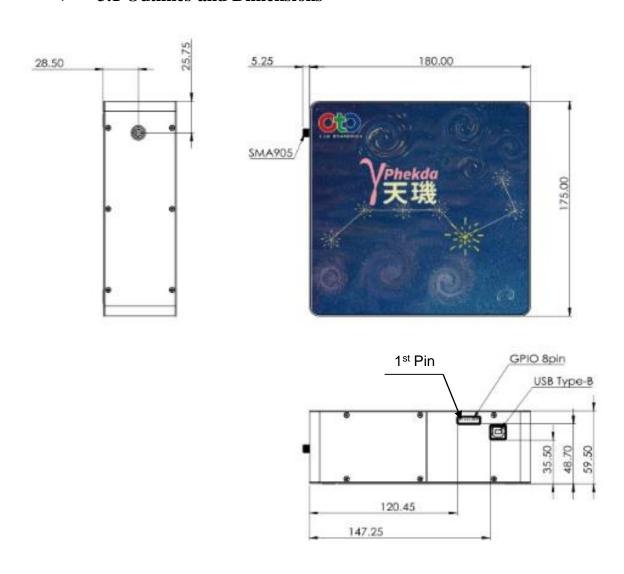


Figure 5. PD & PD-NIR series outlines and dimensions

OtO Photonics PD & PD-NIR Product Sheet

▶ 3.2 Electronic Output Pin Assignments

The PD & PD-NIR Series provides an 8-pin 2.0mm rear external I/O port.

Side entry type

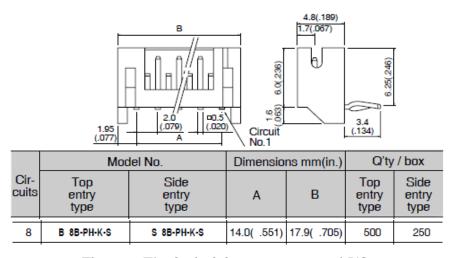


Figure 6. The 8-pin 2.0 mm rear external I/O port

PD & PD-NIR Product Sheet

External Ports

The following figure shows the external ports on the PD & PD-NIR Series. From left to right: the rear external I/O port, the PC USB.

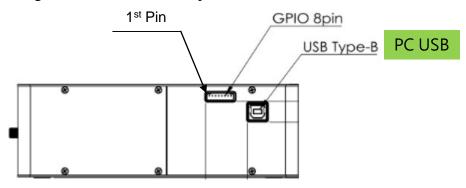


Figure 7. External ports on the PD & PD-NIR Series

Rear Extension Port Pin# Description Alt Function

#Pin	Direct	Pin name	description				
1	Power	5V Input/Output	When connecting to PC USB port, this pin is also connected to VBUS. This pin can provide around 0.1A power for external device.				
2	Output	TX	UART TX. TX is the output from the RISC controller.				
3	Input	RX	UART RX. RX is the input for the RISC controller.				
4	Output	GPIO0	General Purpose Output 0.				
5	Output	GPIO1	General Purpose Output 1.				
6	Output	LS_ON	Light Source Turn ON.				
7	Input	Trigger_IN	External Trigger Input Signal.				
8	GND	GND	GND				

OtO Photonics PD & PD-NIR Product Sheet

▶ 3.3 Sensor Overview

Sensor / System Noise

The three key factors that affect the noise level of the output signal are: stability of the light source, electronic noise, and the sensor noise. Excluding the effect of the external light source, the first thing to check is the dark noise of the measurement system. Dark noise is defined as the voltage output (Vout RMS) over a period of 10ms integration time in a completely dark environment. So the dark noise level is solely determined by the electronic noise in the readout and the CCD/CMOS sensor itself.

Another way to determine the quality of the signal is signal-to-noise ratio (SNR). SNR is defined as the maximum signal level (65535) divided by RMS. Higher SNR means the signal is cleaner, and differences between signals are more discernible when signal levels are low.

Signal Averaging

In general, there are two ways to obtain a smooth curve for a signal: signal averaging and boxcar filter. Signal averaging can reduce the influence of noise on individual pixels. It is natural that increasing the number of samples taken for averaging creates a better averaged curve, but then it takes more time get the final spectrum. On the time-based curve, the signal-to-noise ratio (SNR) increases in proportion to the square root of the number of samples taken. For example, if the number of samples taken is 100, the SNR is increased 10 times.

The second method, boxcar filter, uses neighboring pixels for averaging to get a smooth curve for the signal, but it negatively impacts the optical resolution. This method is not recommended if you need to find the peak values of the signal. These two methods can be combined together in a single measurement if required.

PD & PD-NIR Product Sheet

Operations

► 4.1 Pixel Signal Intensity

The spectrometer is shipped with a baseline signal intensity at 1,000 counts. In cases where the user needs to modify this baseline intensity, it can be done using control commands. There is a command for the user to adjust the AFE OFFSET. Another way to change the baseline signal intensity is to use the "background removal" feature in the software. Which one to use depends on the way the user wants to use the baseline signal intensity.

► 4.2 Digital Input/Output

General purpose input/output (GPIO)

The PD & PD-NIR Series comes with six 3.3V digital input/output pins that can be used for data acquisition on the 8-pin external I/O port. Using software, these I/O pins can be defined for different application purposes. To support some OEM customization needs, the PD & PD-NIR Series provides the flexibility to use a special clock generator (such as single pulse or PWM).

OtO Photonics PD & PD-NIR Product Sheet

GPIO recommended voltages:

VIL(max) = 0.8V

VIH(min) = 2.0V

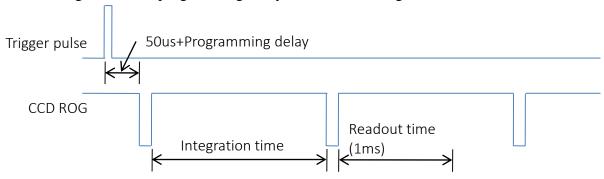
GPIO maximum/minimum voltages:

VIN(min) = -0.3V

VIN(max) = 5.5V

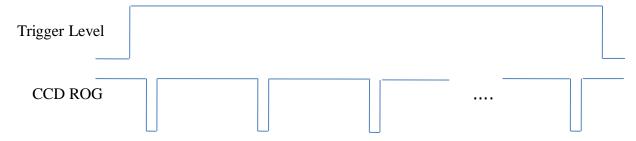
Data transfer interface

USB 2.0

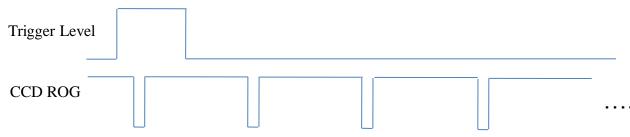

The 480Mbit/s USB (Universal Serial Bus) is a widely used data transfer standard for computers. The spectrometer control software provided by OtO Photonics uses USB to connect to multiple PD & PD-NIR Series spectrometers. The energy-saving PD & PD-NIR Series can be powered via a USB cable over its VBUS line.

PD & PD-NIR Product Sheet

► 4.3 Trigger Modes


• Single trigger/single capture

In the single trigger/single capture mode (with preconfigured integration time), the spectrometer waits for a trigger pulse and captures the spectrum once upon receiving the trigger pulse. It can be triggered on a rising edge or a falling edge. An integration time programming delay can also be configured.


Software trigger

In the software trigger mode (with preconfigured integration time), the spectrometer waits for the external trigger signal level to go up then starts and continues to capture the spectrum using preconfigured integration time till the signal level drops.

Software trigger/multiple capture

In the software trigger/multiple capture mode (with preconfigured integration time and software commands to capture the spectrum), the spectrometer continues to capture the spectrum with the preconfigured integration time even when the trigger pulse drops.

PD & PD-NIR Product Sheet

USB Data Transfer and Controls

Overview

The PD & PD-NIR Series is a compact spectrometer with an embedded microcontroller and supports USB data transfer. This section provides the computer programming details on how to control the PD & PD-NIR Series vial USB. This information is intended only for those who intend to develop their own software instead of using the standard software provided by OtO Photonics (SpectraSmart).

Hardware Description

The PD & PD-NIR Series leverages the built-in 32-bit RISC microcontroller in the USB 2.0 chip. The program codes and data are store in the SPI Flash. This RISC microcontroller provides 64MByte of DDR and 64Mbits of Flash.

USB Information

PD & PD-NIR Series USB Vendor ID: 0x0638; Product ID: 0x0AAC The PD & PD-NIR Series supports USB 2.0 connection and uses USB bulk streams for data transfer between the spectrometer and the computer. For more information on USB, please visit the USBIF website: http://www.usb.org

PD & PD-NIR Product Sheet

Programming Guide

Application Programming Interface (API)

The following section provides a list of APIs and their functions.

☐ Open PD & PD-NIR Series Spectrometer

Description: Connecting the computer to an PD & PD-NIR Series spectrometer.

a. Function name: UAI_SpectrometerOpen

b. Parameters:

dev: Since one computer can connect up to eight PD & PD-NIR Series spectrometers simultaneously, the 'dev' parameter specifies which device to connect to.

handle: A unique identifier returned by the API to identify the connected spectrometer. Each connected device is assigned a different handle. This handle is used by the API to identify which device to control in subsequent operations.

□ Get Frame Size

Description: Getting the frame size of the sensor in the spectrometer.

a. Function name: UAI_SpectromoduleGetFrameSize

b. Parameters:

device_handle: The unique identifier for the spectrometer to be controlled.

size: Returning the frame size in 16-bit format.

□ Acquire Wavelengths

Description: Starting to acquire wavelengths. The PD & PD-NIR Series can acquire the complete distribution of wavelengths.

a. Function name: UAI_SpectrometerWavelengthAcquire

b. Parameters:

device_handle: The unique identifier for the spectrometer to be controlled.

buffer: The buffer to receive the data acquired.

PD & PD-NIR Product Sheet

□ Acquire Spectrum

Description: Starting to acquire the spectrum. The PD & PD-NIR Series can acquire the complete spectrum corresponding to the data acquired by the

"UAI_SpectrometerWavelengthAcquire" function.

a. Function name: UAI_SpectrometerDataAcquire

b. Parameters:

device_handle: The unique identifier for the spectrometer to be controlled.

integration_time_us: Specifying the integration time in 32-bit format (μs).

buffer: The buffer to receive the data acquired.

average: The number of samples to take for signal averaging to reduce noise.

□ Get Wavelength Range

Description: Getting the supported maximum and minimum wavelengths.

a. Function name: UAI_SpectromoduleGetWavelengthStart

UAI_SpectromoduleGetWavelengthEnd

b. Parameters:

device_handle: The unique identifier for the spectrometer to be controlled. **lambda:** Returning the maximum/minimum wavelength (nm) supported by the PD & PD-NIR Series in 32-bit format.

□ Get Integration Time Range

Description: Getting the maximum/minimum integration time.

a. Function name: UAI_SpectromoduleGetMaximumIntegrationTime

UAI_SpectromoduleGetMinimumIntegrationTime

b. Parameters:

device_handle: The unique identifier for the spectrometer to be controlled.

Integration Time: Returning the maximum/minimum integration time

supported by the PD & PD-NIR Series in 16-bit format.

Note: The minimum integration time is specified in microseconds (μ s). The maximum integration time is specified in thousand seconds (ks).

☐ Close PD & PD-NIR Series Spectrometer

Description: Disconnect the computer from the PD & PD-NIR Series spectrometer.

a. Function name: UAI_SpectrometerClose

b. Parameters:

handle: The unique identifier for the spectrometer to be disconnected. The disconnected spectrometer will stop all of its operations when this command is executed.